




Table of Contents

1. Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I Animal/Animat-like Communication

2. Definition of Communication - A Biological Perspective . . . . . . . . . . . . . . 9

3. Challenges for Synthesizing Animat-like Communication . . . . . . . . . . . . . 12

4. Evolutionary Pre-requisites for Emergence of Communication . . . . . . . . 31

5. Game-Theoretic Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6. Bio-inspired Self-organized Communicating Agents . . . . . . . . . . . . . . . . . . 48

II Human-Like Communication

7. The Characteristics of Human Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8. Prerequisites related to Joint Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9. Prerequisites related to the Communication Medium . . . . . . . . . . . . . . . . 96

10. Stages and Computational Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11. Neurobiological Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

12. Theoretical and Complex Systems Challenges . . . . . . . . . . . . . . . . . . . . . 156

III Applications

13. Application Opportunities for ECAgents . . . . . . . . . . . . . . . . . . . . . . . . . . 171

14. White Paper Concluding Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220



IV



Preface

Luc Steels

Sony Computer Science Laboratory Paris

1.1 The ECAgents Project and the White Paper

The ECAgents project proposes fundamental research to understand the role of
communication in collections of embodied and situated agents using the meth-
ods of complex systems science and computer science. We aim at studying how
communication arises, what different types of communication systems there are
or can be, what the different pre-conditions are that must be satisfied for the
emergence of different types of communication systems, what kind of perfor-
mances at the collective level different communication systems make possible.
In more concrete terms, the project considers basic properties of different com-
munication systems, from simple communication systems in animals to human
language and technology-supported human communication.

In studying the role of communication in collections of embodied agents, the
project has adopted the following methodological choices:

– By collections of agents is meant a plurality of agents that by interacting
together exhibit collective performances that no single agent would be able
to generate by acting alone.

– The agents are embodied and physically situated, that is, they are physical
agents interacting not only among themselves but also with the physical
environment. The agents do not only exchange messages with other agents
but they also move or are carried around in physical space and they interact
non-symbolically with the physical environment.

– The communication system of the agents is not pre-designed from the outset
and is not fixed but it emerges spontaneously from the interactions of the
agents among themselves and with the external environment and is in a
constant state of flux due to the changing conditions of the agents, their
tasks, and their environment.

– Not only the communication conventions but also the underlying ontologies
are assumed to self-organise and evolve as the population of agents, the
media they use, the environment, and the topics of mutual interest keep
changing.

– The research strategy adopted for the project is not the traditional one of
studying, analysing, and experimenting with communicating agents that ex-
ist in nature but is to construct collections of artificial agents, both simulated
in a computer and actual physical artefacts, and to do experiments and test
hypotheses with these collections of artificial agents.



– The research strategy includes not only the actual construction of both sim-
ulated and real artefacts but also the study of the more abstract and gen-
eral properties of collections of interacting and communicating agents, e.g,
the role of the interaction and communication network topology, the more
abstract properties of their communication system (combinatiorial vs non-
combinatorial, grammaticalized vs nongrammaticalized, etc.), its dynamical
systems properties, etc.

– Given the research strategy just described, the project is not only advanc-
ing our scientific understanding of embodied communicating agents existing
in reality but it is also suggesting new technologies that consist in collec-
tions of physical devices (robots and robot-like artefacts, wireless devices,
ubiquitous computing, etc.) that interact with an external environment and
communicate both among themselves and with human users.

The ECAgents project, which is firmly rooted in the most innovative and
advanced IT-technology that will become widespread in the coming 10 years, in-
cludes partners that are already doing concrete experiments with robots, wireless
devices, ubiquitous environments, and living systems including humans. How-
ever, its main focus is on the development of scientific foundations by using
methods, insights, and techniques from complex systems research. An evolving
communication system and its underlying adaptive ontology is viewed as a com-
plex adaptive system and evolutionary theory, game theory, network theory, and
dynamical systems theory can all significantly contribute to its study. We believe
that there is today still a tremendous gap (with some notable counter-examples)
between complex systems researchers and IT, but this project is determined to
bridge this gap for an issue of major importance. Through the results of this
project, we expect significant breakthroughs in many future and emergent tech-
nologies, from self-developing robots to the semantic web and ubiquitous wireless
devices.

In the original workplan of the ECAgents project, we decided to focus the
first year on an analysis of the challenges posed by Embodied Communicating
Agents and document the results of this analysis in a White Paper. The reasons
for this action are as follows:

1. The ECAgents Project (as indeed the ’Complex Systems FET action’ in gen-
eral) is a highly multi-disciplinary endeavour and one of the major goals of
the project is to bridge the gap between different disciplines. A profound dis-
cussion of challenges and explicit communication of these challenges among
the partners from different disciplines has proven to be a very effective way
to achieve this inter-disciplinary discussion and the writing of the White
Paper has been a major stimulus.

2. The evolution of communication in embodied agents is still a very new terrain
and the actual challenges are far from understood. By mapping out the
terrain we are not only in a much better position to refine the workplan
for the remainder of the project but also give guidance to people outside the
ECAgents project on what good research topics are. This way, the ECAgents
project is achieving a multiplicator effect.
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We have already communicated results of the White Paper in various fora,
such as the Complex Systems Conference organised in Torino by the ’Exystence’
network of excellence in complexity (with contributions from 5 ECAgents part-
ners), the IST conference in The Hague (with contributions from 3 ECAgents
partners), and a dozen other scientific workshops and conferences in the various
disciplines involved in the study of Embodied Communicating Agents. The goal
of the White Paper is to capture a large part of our ongoing discussion which
is far from finalised. They are reported by the principle researchers involved,
although other partners in ECAgents were always engaged in the preparatory
discussion for each topic.

The White Paper is an evolving document and the present version is a snap-
shot. We are committed to continue improving this document as our under-
standing of the field and its various challenges matures. At some point, when
sufficient maturity has been reached, we plan to publish the White Paper as a
public document, intended to give guidance to young researchers on challenging
open problems in the field. As such, the White Paper will be the basis of other
dissemination actions of the ECAgents project.

Communication is an extremely broad field which ranges from very simple
animal style communication to extraordinarily complex human style commu-
nication. The ECAgents project covers the full range of this broad spectrum,
but obviously different challenges apply depending on the nature of the commu-
nication system. Hence the document is organised in two parts. The first one
focuses more towards animal style communication systems and the second one
on human style communication systems, even though we recognise that there
is a continuum between the two. The potential for applications based on the
results of investigating these two forms of communication is contained in a third
major part of this document. The remainder of this preface briefly surveys the
various contributions.

1.2 Animal/Animat-Like Communication

The first part of the White Paper focuses on animal/animat-like communica-
tion. These are communication systems inspired by animal communication and
synthesised on physically embodied animal-like robots, often called animats. It
covers the following topics: (1) Definition of communication from a biological
perspective, (2) Challenges for achieving emerging communication in animats
and (3) Theoretical challenges in the synthesis of Human-Like Embodied Com-
munication systems.

Defining Communication Defining communication is a difficult issue because
each related field has their own way of looking at it. The first note, contributed
by Eors Szathmary (Collegium Budapest) defines communication from a bi-
ological perspective and hence sets the stage for the synthesis of animal-like
communication systems.
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Challenges for Achieving Animat-like Communication This section introduces
the main challenges for the synthesis of communication in animats. There is
first a contribution by Stefano Nolfi (CNR) which gives a broad overview of the
state of the art. Next, Magnenat and Floreano (EPFL) provide more specific
challenges if an evolutionary robotics approach is used to synthesise animat-like
communication systems. They also discuss technical opportunities and challenges
from the viewpoint of robotics.

Theoretical Challenges Two sections have been contributed. The first one by
Peter Hammerstein (Univ of Berlin). focuses on insights obtained from the study
of cooperation and conflict in biology, using game theory as a way to frame
the issues and provide a reasoned approach towards a solution. These insights
are viewed as providing constraints on the design of ECAgents. The second
section surveys self-organising communication systems in animals and draws
some lessons and theoretical challenges for animats.

1.3 Human-Like Communication

The second part of the White Paper focuses on human-like communication.
It covers the following topics: (1) Definition of human-like communication, (2)
Challenges for achieving the prerequisites for human-like communication, (3)
Stages in achieving human-like language communication, (4) Computational,
Neurobiological and Theoretical challenges in the synthesis of Human-Like Em-
bodied Communication systems.

Defining Human-like Communication The first section (reported by Domenico
Parisi, CNR Rome) focuses on defining human-like communication as distin-
guished from animal-like communication. It is inspired by earlier research by
Hockett. Parisi introduces and elaborates on eight defining characteristics: Hu-
man language has syntax and, more generally, has signals which are made up
of smaller signals, is culturally transmitted and culturally evolved, is used to
communicate with oneself and not only with others, is particularly sophisti-
cated for communicating information about the external, environment, uses dis-
placed signals, is intentional, is the product of a complex nervous system, and
influences human cognition. These characteristics provide the challenging bench-
marks against which human-like communication systems are to be measured.

Prerequisites for Human-like Communication The next two sections elaborate
on the prerequisites for human-like communication, focusing in particular on
attention sharing, and origins of the communication medium.

Human-like communication has been defined by Tomasello, et.al. as manip-
ulation of attention so that it becomes shared. It follows that we need a good
understanding of what attention is and how it can be manipulated, particularly
because attention sharing can also be achieved without explicit communication
and by non-verbal communication such as through pointing. Such an analysis is
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reported by Hafner and Kaplan (Sony CSL Paris). They identify four aspects:
Attention detection, Attention manipulation, Social coordination, and Inten-
tional understanding. Each aspect is related to developmental stages in humans
and the state of the art in the synthesis of these prerequisites as well as specific
remaining challenges are reported.

It is obvious that communicating agents need a physical medium in which
they can carry out their communication, and if the language system is highly
complex, this medium needs to be sufficiently complex to allow combinatorial
possibilities. Human languages use predominantly speech but in principle other
media are possible and may be better for artificial agents (e.g. we can envision
that a molecular medium as explored in the Pace project might be usable). Re-
cent work is beginning to show that a population of agents can self-organise a
sound medium into a combinatorial sound system similar to human like lan-
guages. The contribution by PY Oudeyer (Sony CSL Paris) analysis the current
state of the art and the remaining challenges in this area.

Stages The next section (contributed by Luc Steels (Sony CSL Paris)) proposes
first a series of six stages that go from a minimal communicating system to a
human-like language. Each stage introduces a more complex form of conceptual-
ising reality and hence increased complexity on the meaning side which requires
a more complex way of expression on the form side. The transition between one
stage and the next each time requires a major ’breakthrough’, such as the origins
of compositionality, the origins of syntax, level formation for the emergence of
a meta-grammar, etc. For some of the early stages there are already quite solid
computational mechanisms which make already applications in embodied com-
municating agents possible, whereas for other stages very little is at this point
achieved. They will require major advances both technically and conceptually
with respect to the current state of the art.

Neurobiological Challenges The section of this document which presents the
stages also contains the challenges in terms of computational modeling of agent
architectures at each stage. One of the goals of the ECAgents project is to turn
these computational models into neurobiologically realistic models so that it
becomes potentially possible to trace out an evolutionary scenario for explaining
the brain functions that contributed to the human evolution of language. The
challenges related to this effort are reported in a contribution by Eors Szathmary
(Collegium Budapest)).

Theoretical Challenges Once there is a good understanding of different stages in
the complexity of human language-like communication, it becomes possible to
identify very clear theoretical challenges that can be solved using the methods
of complex systems science. These theoretical challenges concern (1) Prediction
of macroscopic properties of a system of communicating agents based on micro-
scopic behaviors of the agents (e.g. predict that agents will reach a shared lex-
icon) (2) Understanding of powerlaws underlying the behavior of these systems
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(e.g. relation between increase in population size versus time towards conver-
gence) and (3) Understanding of limitations and constraints that would push
agents from one stage towards the next stage. The ongoing discussion on these
challenges in the ECAgents project is reported by Steels, Loretto, et.al. This
section also reports the potential methods from complex systems science that
could be used to tackle them. The ability to predict properties of embodied com-
municating agents is obviously a prerequisite for their practical employment.

1.4 Applications

The final part of the White Paper is concerned with applications of Embodied
Communicating Agents and reported by Holmqvist (Viktoria Institut), Kaplan
and Steels (Sony CSL Paris). Three applications are being discussed which each
generate their own challenges: (1) Robotic applications, where agents are embod-
ied in physical form as autonomous robots, with potential applications in service
robots and entertainment robots, (2) Ubiquitous applications, where agents can
move between different forms of physical embodiment so that agents can exist
on devices such as PDA’s and digital cameras, and (3) peer-to-peer applications,
such as music file sharing, where the problem is semantic interoperability. Each
of these applications is currently on the edge of becoming a reality but several
basic issues still remain to be solved.
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Part I

Animal/Animat-like
Communication





Definition of Communication - A Biological
Perspective

Szabolcs Szamado

Collegium Budapest

2.1 Definition of Communication

There are numerous definitions of communication, see table 1. for examples.
One reason of this bewildering variety is that each discipline and sub-discipline
of science has its own definition of communication. Since these disciplines vary
with respect to their subject of study and methodology, definitions of markedly
different rigour and scope can be found. While it might be impossible to find
a definition that would fit all the disciplines, it might be a good idea to favour
some of the definitions in order to achieve a common ground that can be shared
by all project participants.

Here we would like to introduce and dissect one of the most common defini-
tions used in biology and show the advantages that this viewpoint can offer.

According to Krebs and Dawkins (1984), communication occurs: “when an
animal, the actor, does something which appears to be the result of selection to
influence the sense organs of another animal, the reactor, so that the reactor’s
behaviour changes to the advantage of the actor.” In our everyday usage (and
according to many of the listed definitions), however, communication usually
implies the transmission of some information. Thus, as Maynard Smith and
Harper (1995) argues there must be a connection between these two approaches
because: “it is not evolutionarily stable for the receiver to alter its behaviour
unless, on average, the signal carries information of value to it.” That is, we
can expect that at signalling equilibrium both the signaller and the receiver
benefits on average from the use of signals. This can be stated analytically by
saying that the value of signals should be always greater than zero at equilibrium
(Lachmann and Bergstrom, 2004). Here the value of signals is defined as the
difference expectations: the expected fitness given signal minus the expected
fitness without signal (Lachmann and Bergstrom, 2004).

In the spirit of the Maynard Smith and Harper (1995) extension of the def-
inition we can differentiate between signals and cues. “Signals are stimuli that
convey information and have been moulded by natural selection to do so; cues
are stimuli that contain information but have not been shaped by natural se-
lection specifically to convey information.” (Seeley, 1989) That is, a cue is an
accidental source of information, while signals are selected. Examples for signals:
dominance displays, threat displays, courting dance, begging, etc. Examples for
cues: size, speed, etc. Both size and speed may convey useful information to the
observer about the strength or health of the other animal; however, they were



“Communication occurs when the action of or cue given by one organism is per-
ceived by and thus alters the probability pattern of behaviour in another organism
in a fashion adaptive to either one or both of the participants.” (Wilson, 1975)

“Communication is the transfer of information via signals sent in a channel between
a sender and a receiver.” (Hailman, 1977)

Communication occurs: “when an animal, the actor, does something which appears
to be the result of selection to influence the sense organs of another animal, the
reactor, so that the reactor’s behaviour changes to the advantage of the actor.”
(Krebs and Dawkins, 1984)

“Communication is a matter of causal influence . . . the communicator [must] con-
struct an internal representation of the external world, and then . . . carry out some
symbolic behaviour that conveys the content of that representation.” (Johnson-
Laird, 1990)

“The term is used here in a narrower sense, to refer to the behaviour by which
one member of a species conveys information to another member of the species.”
(Kimura, 1993)

“Communication occurs, if and only if, information moves from the input to one
process to the output from a second process, the latter process being the reserve of
the first process.” (Losee, 1999)

“Communication is the activity of communicating; the activity of conveying infor-
mation” (word reference.com)

Table 1. Various definitions of communication

selected for a different reason. As for size, the reasons are to fend off rivals, of-
fer protection against cold, etc., while with regard to speed the reasons include
catching prey or escaping predators, etc. The exact terminology is not important
in a sense that some author might call cues signs and call permanently on signals
cues (Hauser, 1996). The important thing, however, is to make a distinction be-
tween those features that were designed/selected for transmitting information,
and those features that were designed/selected for some different function, but
as a side-effect, they might convey some piece of information useful for potential
receivers. While one would like to call the first type of interaction communica-
tion (i.e. the one that involves signals), the second type is only observation or
eavesdropping (i.e. the one that involves cues).

All in all, the following criteria should hold for any communication system:

– Signals should be used, where a signal is an object/behaviour/morphological
feature that was selected/designed to convey that particular piece of infor-
mation.

– There should be a positive feedback between the efficiency of information
transfer and the fitness/reproductive success of the given agent/animal.
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Why is this last point important? Because it is this positive feedback pro-
cess that can guarantee the maintenance and the long-term stability of a given
communication system. Of course, such a definition would exclude one-shot in-
teractions; however it might not be a great loss. In fact, if the aim of the project is
to design embodied communicating agents that can communicate reliably, then
excluding one-shot interactions might be a very desirable research strategy.
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Challenges for Synthesizing Animat-like
Communication

Stefano Nolfi

Institute of Cognitive Sciences and Technologies, CNR

3.1 Introduction

In this chapter we will focus on how an effective communication system might
arise among a collection of initially noncommunicating embodied agents. An-
swering this question is important for both scientific and technological reasons.
From a scientific point of view, understanding how communication might emerge
in a population of interacting embodied agents might shed lights on the evolution
of animal communication and on the origin of language. From a technological
point of view, understanding the fundamental principles involved might lead to
the development of innovative communication methods for multi-agent software
systems, robotic systems and ubiquitous computing devices.

Existing models of emergence of communication often focus on specific as-
pects, such us (a) how a shared communication system can emerge in a popula-
tion of interacting agents (e.g. Steels, 1999; Cangelosi and Parisi, 1998) (b) how
a structured form of communication can emerge from a simpler unstructured
communication system (e.g. Kirby, 2001; Cangelosi and Parisi, 2002), (c) lan-
guage acquisition and transmission (e.g. Billard and Dautenhahn, 1999; Steels
and Kaplan, 2000a; Sugita and Tani, 2004). In this chapter, instead, we will
focus on the more general question of how a population of embodied and situ-
ated agents that have to solve a given adaptive problem might develop forms of
interaction and communication that enhance their adaptive capability.

The motivation of this choice is twofold. The theoretical motivation is that
communication and communication systems are adaptive capabilities shaped by
their function. What, when and how agents communicate (and whether agents
do or do not communicate) depends on the adaptive function of communica-
tion. Similarly the type of communication system that might self-organize in a
population of interacting agents will strongly depends on the type of behaviour
that individuals display in isolation and on the complementary functions that
interactions and communications might have. The underlying assumption is that
communication and language can be properly understood by taking into account
their relation with other important behavioural, social, and cognitive processes.
The practical motivation is that, from an application point of view, the possi-
bility to develop embodied agents able to solve real life problems by exploiting
complex forms of interaction and communication might have huge application
potentials.

In this perspective, three additional aspects play a crucial role.



1. We are interested in models that not only allow the emergence of a commu-
nication ability and a shared communication system but that also allow the
discovery of categories (or coupled internal/external dynamical processes)
that are useful from the communication and cognitive point of view and
that are not already explicitly or implicitly identified in the experimental
set. This claim is based on the theoretical assumption that one of the main
reasons that explain why the acquisition of a communication ability might
enhance the cognitive/adaptive abilities of interacting agents are indeed: (1)
the fact that the indirect adaptive advantages of communication might force
the development of useful and compact ways to categorize the continuous
flow of sensory-motor information, and (2) the fact that the discoveries of
useful categories might be easier through social interactions than in isolation.

2. We are interested in models in which individuals, beside from reach
signalling and interaction capabilities, also have a reach sensory and
motor non-communicative repertoire that might allow them to improve
their ability to solve their cognitive/adaptive problems by improving both
their individual and their social/communication capabilities. This claim
is based on the assumption that only by co-adapting their behavioural
non-communicative and communicative abilities, individuals might de-
velop a really useful communication system grounded in the physical
and behavioural characteristics of communicating individuals and able to
exploit active perceptual capabilities. Moreover, this claim is based on the
assumption that one of the key aspects of communication is the possi-
bility to rely on implicit information that does not need to be communicated.

3. Finally we are interested in models in which forms of communication of dif-
ferent complexity might be used . By forms of communication we refer to the
protocol with which individuals interact during communication and to the
way with which communication signals are structured. Forms of communica-
tion might range from simple continuous broadcasted signalling to complex
regulated communication protocols in which, for instance, communication
acts are episodic and asynchronous, communication protocols are negotiated
on the fly between the two communicating agents, and communication acts
consists of sequences of signals organized according to a grammar. This claim
is based on the assumption that more complex forms of communication are
not effective in general terms. Therefore agents should be left free as much
as possible to select the communication form that is most useful, given their
current behavioural/cognitive capabilities.

It is important to point out that our aim here is not that to discuss how
animal like communication can be modelled but rather how embodied artificial
agents can develop forms of communication that are functionally equivalent to
those that can be observed in animal-like communication. Moreover, although
we will focus on the question of how relatively simple forms of communication
might emerge from scratch, we will also address the issue of how complex forms
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of communication (including human-like communication forms) might emerge
from simpler forms.

3.2 State of the art

In this section we will review the research works that are more relevant to the
perspective outlined in the previous section. In section 3.2.1, we will review ex-
periments in which agents, that are asked to solve simple tasks that require
cooperation and coordination, develop simple forms of ritualised social interac-
tions and/or signalling capabilities. In section 3.2.2, we will review experiments
in which agents interacting according to predetermined ritualised interaction
schemes and able to modify their internal states on the basis of the result of
such interactions, develop an ability to successfully categorize external objects
according to a self-organized shared vocabulary and ontology. The aim of this
section is not that to provide an exhaustive review of the area (for a broader
review see Wagner et al., 2003a; Steels, 2003a; Cangelosi and Parisi, 2002) but
rather to identify theoretical and experimental contributions that might lead to
the development of more powerful models and/or to models in which aspects
previously studied in isolation can be integrated.

3.2.1 How simple forms of communication might emerge in teams
of adaptive interacting agents

One interesting demonstration of how behaviours with communicative functions
might emerge from the attempt to solve a task that requires cooperation and
coordination has been provided by Quinn et al. (Quinn, 2001; Quinn et al.,
2003). The author evolved a team of mobile robots for the ability to move by
remaining close to one another. Robots are only provided with proximity sensors
(that also allowed robots to avoid colliding with one another) and therefore do
not have dedicated communication channels. Evolved individuals are able to
solve the coordination problem by communicating through a sequence of sensory-
motor interactions. For instance, in a simple case described in Quinn (2001), two
evolved agents coordinate according to the following sequence of behaviours:
(1) both agents rotate clockwise, (2) the agent that first faces the other agent
with its front (agent B) moves toward the other agent (agent A), (3) agent B
remains close to A by moving backward and forward in order to compensate A’s
movements, (4) once agent A faces agent B with its front, it reverses his direction
and then it starts to move forward by being followed by agent B. Agents A and
B thus assume the roles of leader and follower respectively.

The motor action of the first aligned agent (i.e. the back and forth behaviour
that allows agent B to stay close to agent A and that, consequently, produces a
high activation of A’s infrared sensors) serves as a signal for the other agent (as
reported by Kirby (2002) we might gloss it in English as “after you”). In fact,
“if the agent perceives the signal while it is still rotating, it will adopt the leader
role. However, if it becomes aligned without having perceived the signal, it will
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perform the signalling action and subsequently take the follower role” (Quinn,
2001).

By analysing how the evolved behaviour originated evolutionarily, the au-
thors observed how the behaviour of one agent that produces sustained proxim-
ity and that triggers the reverse behaviour in the other agent (i.e. the behaviour
that has a communication value) resulted from the adaptation of other elemen-
tary behaviours (the obstacle avoidance behaviour and the back away behaviour)
that did not have communicative functions. Indeed, by analysing the evolution-
ary process, the authors observed four phases:

1. Initially (20-50 generations) agents just turn both motors on thus moving in
straight lines

2. Later on (50-100 generations) agents develop an ability to avoid each other.
During this phase, the turning and halting responses displayed by the agents
to avoid each other often result in ‘deadlock’ situations in which the two
agents remains close one another.

3. Later on (110-370 generations) deadlock situations are broken as a result of
the fact that one of the two agents backs away from its partner after some
time allowing the partner to move towards it for a while. The continuation
of this process leads to a slow and jerkily movement of the couple.

4. Finally (from generation 370 on) agents display an ability to reverse in
response to sustained proximity. This new reversing behaviour that allow
agents to start moving in a coordinated manner capitalises on the straight
movement and avoiding behaviour that previously served other functions.

It might be questionable whether this form of interaction is a form of com-
munication or not. Indeed, this is a paradigmatic case in which actions in general
and communication actions can hardly be differentiated. This difficulty can be
explained by considering that the term communication does not have a clear
and uncontroversial definition (Di Paolo, 1998; Castelfranchi, in preparation),
and that distinguishing between communicative and non-communicative actions
is especially difficult in the cases of simple forms of communication. For the pur-
pose of this section it is sufficient to say that we will attribute a communication
value to all actions or sequences of actions that, by influencing the sensory-motor
flow of other agents, enhance the adaptive ability of the group as a whole. The
reason why we do not simply call these actions communication acts is that, in
addition to a communication value, they might have other functions (e.g. they
might allow agents to avoid obstacles, an ability that does not necessarily influ-
ence the behaviour of other agents).

In another recent work, teams of 4 mobile robots have been evolved for the
ability to aggregate and to move together towards a light target (Baldassarre
et al., 2003). Robots are provided with two motors controlling the two wheels,
a speaker continuously emitting a sound, infrared sensors, and directional mi-
crophones. As in the case of the Quinn’s experiments described above, evolved
individuals display an ability to coordinate by interacting/communicating so as
to assume and maintain different roles. In particular, robots are able to form a
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square-like formation in which each individual robot maintains its relative po-
sition with respect to the light and to the other robots, while the whole group
moves straight toward the light. Interestingly evolved robots are able to assume
different roles despite teams are constituted by identical reactive individuals (i.e.
agents that always react in the same way to the same sensory state).
By evolving teams of robots for the ability to solve a collective navigation prob-
lem, Nolfi and Marocco (submitted) showed how robots develop communication
abilities and a vocabulary including 4 signals that influence both the motor and
signalling behaviour of other robots. Robots are asked to find and remain on
two feeding areas by equally subdividing themselves between the two areas. The
team consists in wheeled robots provided with infrared and sound sensors and
actuators controlling the two wheels and a sound speaker.

In this experiment: (1) the number, the form and the meaning of signals
(i.e. the effects of signals on other agents) are not implicitly determined in
the experimental setting but rather emerge during the evolutionary process,
(2) non-communicative and communicative actions are tightly co-adapted so as
to maximize useful properties emerging from their interactions, and (3) evolving
individuals also display an ability to develop a simple form of communication
protocol that allows them to switch signalling behaviours on and off.

Other researchers focused on the emergence of mutual interaction between
two cooperating agents. Di Paolo (2000) reported the results of a set of exper-
iments in which two simulated agents moving in an arena have been evolved
for the ability to approach each other and to remain close together as long as
possible. Agents are provided with: (1) two motors controlling two wheels, (2)
a sound organ able to produce sounds with different intensities located in the
centre of the agent’s body, (3) two sound sensors symmetrically placed at ?45
degrees with respect to the frontal side of the agent that detects the intensity
of the sound, and (4) a recurrent dynamical neural controller with four inter-
nal neurons. Evolved agents successfully approach each other by later remaining
close to one another. Moreover:

1. evolved agents self-stimulate themselves through their own sounds. By re-
ducing agents’ capacity to ear their own sounds, in fact, the author observed
that agents’ performance deteriorated.

2. the intensity of sounds produced by the two agents has a marked rhythmi-
cal shape that results from the interactions of the two agents. After some
time, in fact, signals are phase-locked at some value near perfect anti-phase
(i.e. a form of simple turn taking occurs in signalling behaviour) and the
movements of the two robots become highly coordinated. This coordination
between motor and signalling behaviours of the two agents cannot be ex-
plained by the ability of one of the two agents to adapt to the behaviour of
its partner only, but rather by the achievement of a dynamical co-adaptation
process (entrainment). As shown by the author, in fact, non-plastic beacons
producing rhythmical signals are unable to trigger the same type of coordi-
nation process.
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In a related work, Iizuka and Ikegami (2003a,b) evolved two populations of
simulated agents living in couple in an unstructured arena that should exchange
their roles (chaser/evader) so as to produce a form of turn-tacking behaviour.
Chasing and evading are defined as staying or not staying behind the other agent,
respectively. Evolving agents are provided with a feed-forward neural network
with three layers including: (1) three sensory neurons encoding the other agent
relative position and orientation and three context units whose activation value
is copied from that of the activation state of three additional output units at
time t − 1, (2) ten internal neurons, and (3) two motor neurons encoding the
desired speed of the two wheels and three additional output units that are used
to predict the activation state of the three sensory units at time t + 1. Evolving
agents are selected for the ability to alternate their roles and to predict each
other’s behaviour. Individuals are evaluated in pairs and each individual of a
population is evaluated, in different trials, with all the individuals of the other
population. The sensory state at time t + 1 is used to compute a prediction
error that is then used to change the connection weights according to the back-
propagation learning rule.

The analysis of obtained results shows how in early evolutionary phases
agents tend to produce regular turn taking (i.e. the two agents display regu-
lar trajectories that allow them to exchange their role periodically). In succes-
sive evolutionary phases, instead, agents tend to display chaotic turn-taking (i.e.
the two agents display non-geometrical and an always changing trajectory with-
out fixed periodicity). Regular turn-takers are comparatively insensitive to noise
(probably due to their simple dynamics) with respect to chaotic turn-takers.
However, chaotic turn-takers are better capable to adapt online to the other
agent’s behaviour with respect to regular turn-takers. Tests made by using pas-
sive agents (i.e. agents unable to adapt their behaviour on the fly) showed how
the evolved turn-tacking behaviours are not simply forms of oscillator but rather
forms of dynamic coupled behaviours resulting from ongoing two-directional in-
teractions.

The visual inspection of the agents trajectories and the analysis reported
above seem to indicate that interesting forms of interactions and communication
occur. Moreover, although the role of prediction learning is not analysed in
detail, obtained results seem to indicate that the ability to predict the other
agent’s behaviour might constitute an important pre-requisite for the possibility
to develop effective turn-taking behaviour. Finally, as pointed out by the
authors, turn-taking is certainly an important pre-requisite for the emergence
of complex forms of communication.

Overall, the experimental results above demonstrate how individuals selected
for the ability to perform a cooperative task might not only develop forms of
communication but also primitive forms of communication protocols that in turn
enhance their communication/interaction abilities.

Although these models provide important insights and demon-
strate how simple forms of communication might emerge from scratch,
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however, they only lead to the development of simple forms of com-
municative and non-communicative behaviours. How these models can
be extended in order to deal with more complex and reach situations
is an open research issue that will be discussed in section 3.3.1 and
3.3.

3.2.2 How a population of communicating agents might lead to the
self-organization of an ontology and a shared lexicon

In the Talking Head experiment, Steels (1999) demonstrated how the interaction
between a population of embodied and communicating agents might lead to the
self-organization of a shared lexicon as well as a perceptually grounded catego-
rization of the world. Although the goal of this research is not that to observe
how communication might emerge as an indirect result of the need to accom-
plish a collective task, this model represents an important reference point and
provides important insights on crucial aspects that are simplified in the models
reviewed in the previous section.

In the Talking Head experiment the environment consists of an open-ended
set of geometrical figures (objects) pasted on a white board. The population
consists of a number of software agents that are sequentially embodied into
two robots provided with a pan-tilt camera and a simulated sound auditory
and production systems (for a similar model implemented on mobile LEGO
robots, see Steels and Vogt, 1997b). The two robots look toward the white
board and interact by playing a language game in which they assume the role
of the speaker and the hearer, respectively. During each game, the speaker
identifies a randomly selected object on the white board and produces a
word or a sequence of words that should allow the hearer to identify the
corresponding object. The hearer then tries to identify the area to which the
speaker is referring to by visually pointing to the area itself. The speaker
finally responds by pointing to the selected area thus allowing the hearer
to identify whether communication was successful or not, and, in the latter
case, which was the correct target area. As a result of each game and on the
basis of the course of the game (e.g. the fact that the hearer already has in
its vocabulary the words produced by the speaker or not, the fact that the
hearer did or did not successfully identify the target area), agents modify their
internal vocabulary and ontology (i.e. the meaning associated to the words of
their vocabulary). The continuation of this process leads to: (a) an increase
of successful games (up to almost 100%), and (b) to the development of an
effective lexicon and an ontology shared within the population (i.e. a lexicon
and an ontology that allows agents to play the language game successfully).
Such self-organized lexicon and ontology also fulfils the environmental and
body characteristics experienced by the agents (e.g. the discrepancy between
the two agents’ field of view, the reliability of the robots visual system, the
specific type of objects and configurations of objects located on the white board).
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Agents are provided with hand crafted sensory pre-processing routines and
with predefined motor skills and schemas of interactions. Sensory pre-processing
routines consist in: (1) software routines that allow an agent to extract a sequence
of perceived objects and their relative properties (such as the horizontal and the
vertical position of the object, its average grey scale value, its area, the number
of edges etc.) from a visual scene, (2) software routines and position sensors that
detect the point to which the speaker robot is visually pointing to, (3) software
routines that allow the hearer to receive as input the sequence of words produced
by the speaker. Motor skills consist in, for example, a software routine that allows
an agent to identify a unique area on the visually perceived scene on the basis
of a sequence of words with their associated meanings. Schemas of interactions
consist, for example, in: (1) routines that create a new word with its tentative
associated meaning in the vocabulary of the hearer when it hears a word that
it is not included in its vocabulary, (2) a routine that creates a new word in
the vocabulary of the speaker when none of its current words uniquely identify
the current selected object of the white board, (3) a routine that updates the
communication success rate associated to words, etc.

What results from the changes in agent’s internal structures occurring during
agent’s interactions are: (1) a perceptually grounded categorization of the world
(consisting of a lexicon and a corresponding ontology), and (2) the convergence
of the population toward a sufficiently shared lexicon and ontology. As an ex-
ample of word/meaning formation, consider that the horizontal position of an
object ranging from 0.0 to 1.0 might be categorized into two categories/words
(corresponding, for example, to the two halves of the range) or into finer and
finer categories with their corresponding words. As a second example consider
that one object (i.e. a red triangle located in the top-left side of the board)
might be discriminated in different ways (e.g. by using words that indicate its
shape and colour or its position). Finally, consider that the same meaning can be
associated with two or more words and two or more words might have the same
meaning (both at the level of the single agent or at the level of the population).
Indeed, by analysing the frequency of words used to express a single meaning
in one experiment, one can observe a struggle in which different words compete
until the population settles on a single dominant word. This winner-take-all ef-
fect is due to a positive feedback loop between use and success. The more agents
prefer a particular word, on the average, the more they use this word and the
more success this word has.

In a successive work, Steels and Kaplan (2000b) used a similar approach to
study how a Sony AIBO robot might acquire a lexicon and a corresponding
ontology by a human mediator with whom it plays a similar language game.
The use of a mobile autonomous robot (rather than a pan-tilt camera placed
on a fixed position as in the case of the Talking Head experiment) introduces
significant new complexity from the point of view of the categorization problem
given that objects are almost never seen in their entirety and objects’ perceived
images significantly vary on the basis of the robot/head/object relative positions
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and orientations. The robot/human interaction is regulated on the basis of a
predefined sequence of elementary behaviours (a language game). More precisely:

1. The human mediator first shows an object to the robot by placing the object
in the robot’s field of view and by saying “look”, a word that helps the robot
to focus its attention on the current visual scene. The robot then concentrates
on the object by trying to track it and touch it.

2. The human label the object with a word (“ball” for example).
3. The robot tries to pronounce the same word. The human mediator then

provides a positive feedback (i.e. pronounce the word “yes”) or repeats the
original word if the word it hears is different from the one it previously
produced. If the word is a new one for the hearer robot, it creates a new
word in its vocabulary.

4. The robot stores in its memory a perceived instance of the object and asso-
ciates it with the corresponding word. The comparison of a new perceived
image with the labelled images previously stored later allows the robot to
identify and name an object without the help of the human mediator.

As pointed out by the authors, several problems might arise during these hu-
man/robot/environment interactions. For example, the robot might have heard
a wrong word due to problems with speech recognition or the robot might not
have been paying attention to the right object. The impact of these problems,
however, is minimized by the interactions with the human mediator regulated by
the language game script (i.e. the human mediator repeats the word if it has not
been properly understood by the robot or tries to bring the robot’s attention on
the right object when the robot pays attention to something else). For a related
model that addresses how a communication ability can be socially transmitted
from a robot with a predetermined lexicon and other robots see (Billard and
Dautenhahn, 1999).

These models present two important advantages with respect to the mod-
els described in the previous section, namely: (1) the ability to exploit social
learning, and (2) the ability to exploit ritualised interactions between agents
(language games). The implication of these aspects will be discussed in the next
sections. The main limitation of these models is that, aside from the content of
communication acts, the behaviours of agents is rather predetermined and fixed.
This prevents the possibility to exploit a co-adaptation between communicative
and non-communicative forms of behaviour. Moreover, this makes these models
not suitable to solve general co-cooperative problems (e.g. cooperatively explore
an unknown area) or to study how ritualised interactions, language games and
vocabularies might have originated.

3.3 Open research problems: identifying and integrating
crucial cognitive/behavioural capabilities

The attempt to model how a population of embodied agents trying to solve prob-
lems that require cooperation and coordination might develop complex forms of
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communication and a shared communication language is a formidably complex
enterprise. The research works reviewed in the previous section show how several
aspects that might allow to achieve such a goal can be modelled (e.g. how sig-
nalling behaviours and primitive forms of communication protocols can emerge,
how communicative and non-communicative behaviour can co-adapt, how a pop-
ulation of interacting agents might develop a shared lexicon and ontology). How-
ever, the modelling of other crucial aspects (e.g. compositional languages and
grammar) is only at a very preliminary stage (Steels (2003a)). Moreover, a sig-
nificant challenge is constituted by the need to integrate aspects that have been
successfully modelled in different experimental settings into a single coherent
model. In the rest of the section we will discuss how important aspects that
might represent an important prerequisite for the emergence of complex forms
of communication can be modelled and how all the necessary aspects might be
integrated into a single model.

From an evolutionary and developmental perspective the most straightfor-
ward way to approach the issue of how complex forms of interaction and commu-
nication can emerge is to start from simple but open-ended models that might
lead to the emergence of progressively more complex forms of communication
and cognitive capacities. After all, this is how these abilities emerged in natural
life. This possibility, however, can reasonably be pursued only as a long-term re-
search goal. On the short term, it is reasonable to assume that progresses might
be only achieved by predefining, in the starting conditions, crucial elements or
capacities that although in theory could spontaneously emerge in the course of
the process, in practice, would very unlikely do so. These elements or capacities
might consist in agent’s pre-determined architectural constraints, learning algo-
rithms, interaction schemas, etc. From this point of view our problem becomes
that of identifying the crucial minimal set of pre-requisites that might trigger
the emergence of complex forms of interactions and communications.

3.3.1 Adaptation processes

A promising way to develop ECAgents is that to rely on a self-organization
process based on evolutionary and/or learning techniques. On the relation be-
tween self-organization at the level of the adaptation process and at the level
of behaviour exhibited by a collection of interacting individuals see the chapter
6. The models reviewed in section 3.2.1 rely on an evolutionary process (i.e. a
process based on selective reproduction and random variation) while the models
described in section 3.2.2 rely on a form of ontogenetic learning (i.e. a process in
which agents modify their free parameters as a result of their interaction with the
physical and social environment). These two forms of adaptive processes have
complementary characteristics and can be effectively integrated (see Nolfi and
Tani, 1999). In this section we briefly discuss some of the potential advantages
of integrating an evolutionary and a learning process.

Artificial evolution, by only requiring an overall evaluation of the perfor-
mance of an agent or of a group of agents, is a straightforward method to select
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solutions in which different characteristics co-evolve and co-adapt. For exam-
ple, as clearly shown in the models reviewed in section 3.2.1, it is an effective
way to co-evolve communicative and non-communicative behaviours. Learning,
on the other hand, by being based on changes introduced as the result of the
continuous interaction with the physical and social environment, can potentially
exploit the huge amount of information that agents collect through their sen-
sors during their lifetime. This information does not provide direct cues on how
agents should change to solve their adaptive problems. However, combined with
additional evolved or handcrafted mechanisms able to transform sensory infor-
mation into teaching or reinforcement signals (Ackley and Littman, 1991; Nolfi
and Parisi, 1997) or able to channel changes on the basis of genetically encoded
constraints (Floreano and Urzelai, 1998) can lead to powerful ontogenetic adap-
tive processes.

Evolution and learning operate on different time scales. Evolution is a form
of adaptation capable of capturing relatively slow environmental changes that
might encompass several generations. Learning, instead, allows an individual
to adapt to environmental changes that are unpredictable at the generational
level. Indeed, the combination of evolution and learning can lead to an ability to
develop the required behavioral capabilities and to an ability to select on the fly
the right strategy on the basis of the current environmental circumstances (Nolfi
and Parisi, 1997; Nolfi and Floreano, 1998 and Floreano and Urzelai, 1998).

More generally, the interaction between evolution and learning deeply alters
the dynamics of the two processes so that their dynamic in interaction is very
different from their dynamic in isolation. Indeed, evolving plastic individuals
tend to develop a predisposition to acquire their capabilities through learning
rather than, directly, an ability to behave effectively as in the case of evolving
non-plastic individuals. This predisposition to learn may consist of: (1) the pres-
ence of starting conditions that canalise learning in the right direction, and/or
(2) an inherited tendency to behave in a way that maximizes the chance to be
exposed to useful learning experiences. Similarly, while in non-evolving individ-
uals the value of free parameters prior to learning is a constraint that should be
overcome, in evolving individuals inherited genetic parameters prior to learning
represent an opportunity to be exploited during learning (Nolfi, 2002a).

Finally, as we will discuss in Section 3.4.3, social learning (i.e. learning from
others) might potentially allow evolving individuals to acquire capabilities inde-
pendently discovered by other different individuals.

3.3.2 Agents’ sensory-motor structure

Another aspect that strongly affects the potential outcome of experiments in-
volving a population of interacting agents is the type of sensors and motors
(actuators) with which agents are provided. We will not discuss here the possi-
bility to co-evolve/co-adapt the body and the control system of agents although
this possibility certainly provides potential advantages (I. et al., 1994; Sims,
1995; Bongard and Pfeifer, 2003). Rather we will try to identify general crite-
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ria that the experimenter might follow in determining a suitable sensory-motor
structure.

1. The first aspect that should be stressed is that sensors and actuators should
not be conceived as independent entities that have independent functions.
Indeed, by interacting with the external environment (i.e. by modifying their
own position or orientation with respect to the environment or by modify-
ing the environment itself) agents might greatly simplify the problem of
categorizing environmental situations that require different motor reactions
(Scheier et al., 1998; Nolfi, 2002b; Nolfi and Marocco, 2002; Beer, 2003;
Nolfi, in press). Moreover, the possibility to interact with the environment
by producing simple stereotyped behaviour, might allow agents to indirectly
detect complex environmental regularities (Nolfi and Marocco, 2002; Nolfi,
in press). In other words, reach sensing capabilities might be more likely
obtained by complementing a set of sensors with motors that allow agents
to interact with their environment rather than by simply adding additional
sensors. It should be noted, however, that to really exploit sensory-motor co-
ordination agents should not only be provided with sensors and effectors but
should also be able to modify (through an adaptation process) the relation
between sensors and motors. In the Talking Head experiment reviewed in
section 3.2.2, for example, agents are provided with motors controlling the
pan-tilt movement of the camera. However, given that the motor behaviour
of these agents is predefined and fixed, the way in which they interact with
the environment cannot be co-adapted with their current ontology.

2. A second important aspect that should be stressed is that communicative
and non-communicative sensory-motor channels cannot and should not be
separated. In fact, elementary behaviours that initially do not have any social
functions and that have an impact on the sensory systems of other agents
might later on assume a social/communicative function. These forms of pre-
adaptations (in which traits evolved for a non-social function later assume
a social/communicative function eventually loosing, later on, their original
non-social function) might play an important role in the emergence of com-
munication. Indeed, they seems to have played a crucial role in the origin
of the communicative behaviour described by Quinn (2001) and reviewed in
section 3.2.1.

The fact that in natural organisms (and probably in self-organizing artificial
agents) sensors and actuators tend to have both non-communicative and com-
municative functions, however, does not imply that some type of sensors and ac-
tuators and some sensory-motor modalities might potentially have a strong com-
munication potentials. This is the case, for example, of the sensory-motor struc-
tures that allow pointing, detection of pointing (e.g. gazing, head-movements,
arms and fingers movements etc.). Moreover, some types of sensors and actua-
tors or sensory-motor modalities might be especially suited for communication
for their ability to convey information ready to be used from other agents. As
an example of this category consider pheromone that: (1) by lasting a significant
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amount of time can be detected over a significant time range, (2) by remaining in
the physical area in which it has been synthesized can convey spatial information
in a ready to use way, (3) by summing up the trace left by different individuals
can provide compact information on what several individuals did.

3.3.3 Cognitive capacities

In addition to suitable sensors and actuators, embodied and communicating
agents should be provided with a control system that determines the activity
of the actuators on the basis of the current and previously experienced sensory-
motor states. Although simple forms of communication might be developed by
relying on very simple control systems (e.g. reactive neural networks in which
sensory neurons are directly linked with motor neurons and motor actions are
only based on current sensory states), the development of more complex forms
of communication might require much more complex “cognitive” abilities.

Two basic capabilities that embodied and communicating agents should
have are: (1) the ability to form internal categories by mapping sensory patterns
or sequences of sensory patterns that require similar motor reactions into
similar internal states or into similar internal dynamics, and (2) the ability to
generalize, that is the ability to react to new sensory patterns (or sequence of
sensory patterns) on the basis of their similarities with previously experienced
sensory patterns (or sequence of sensory patterns).

While the possibility to form categories based on single sensory states and
the ability to generalize on the basis of these categories have been successfully
modelled (Cangelosi and Parisi, 1998; Steels, 1999; Steels and Kaplan, 2000b;
Marocco et al., 2003), the possibility to form categories based on regularities that
can only be detected by looking at how sensory states change in time is still far
from being well understood. Consider, for example, cases in which agents have to
discriminate different locations of the environment on the basis of the occurrence
of different sequences of sensory cues (Nolfi, 2002c), or select moving objects
to be caught on the basis of their trajectories (Beer, 2003). To perform these
categorization processes agents should be able to takes into account aspects such
us the duration of an event or the sequence with which different events occur that
can only be detected by looking to how sensory states change in time. For recent
results that indicate how the availability of internal states that change at different
time rates might represent an important pre-requisite for solving this problem,
see (Nolfi, 2002c; Gers et al., 2002; Croon et al., in press). Recent results also
indicate the importance of viewing categories as dynamical internal processes
rather than as fixed-point attractors in agents’ internal dynamics (Beer, 2003;
Sugita and Tani, 2004; Iizuka and Ikegami, in press). For an attempt to model
categorization as a bi-directional coordination between the dynamics resulting
from the agent/environment interaction and the agent’s own internal dynamics
see (Di Paolo, 2000; Iizuka and Ikegami, in press)

The emergence of complex forms of communication might also require other
more complex cognitive capacities such as the ability to predict the sensory-
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motor consequences of agents’ own actions (Nolfi and Tani, 2002; Clark and
Grush, 1999), the ability to predict changes in the physical and social environ-
ment, the ability to establish shared attention (see chapter on joint attention 8),
the ability to learn from others or to imitate other agents’ behaviour (Billard,
2000; Tani et al., 2004) etc. The later issue will be discussed in more details in
section 3.4.3.

An additional interesting aspect that might be investigated is whether the
ability to have access to their own communication acts (i.e. talking to themselves
(Steels, 2003b)) might improve the ability of agents to communicate and/or the
ability to acquire complex cognitive abilities.

Finally, the emergence of complex forms of communication very likely re-
quires selective attention mechanisms and/or an ability to modify communica-
tion behaviours on the basis of the potential targets of communication acts. This
aspect will be discussed in more details in the next section.

3.3.4 Interaction/communication protocols

The adaptive potential of social interaction/communication significantly de-
pends on the protocol that regulates communication between agents. Indeed,
communicative actions might have counter-adaptive effects on other agents’ be-
haviour and on the adaptive capability of the population as a whole. For in-
stance, communication acts might interfere with other agent’s behaviours thus
preventing or delaying the ability of these agents to accomplish their current
tasks.

In general terms, one can expect that the adaptive potential of communica-
tion depends on the ability of communicating agents to regulate the communi-
cation dynamics on the basis of a suitable interaction/communication protocol
and specifically:

1. The ability of agents of limiting communication acts (i.e. actions that have
an effect on other agents behaviours) to those that can increase the adaptive
capability of the team. Interestingly, this aspect might lead to an adaptive
pressure to use dedicated communication channels (i.e. to detach communi-
cation actions from non-communicative behaviours).

2. The ability to detect the potential target agents of communication and to
filter and/or re-code communication so as to provide to receivers relevant,
useful, and ready to use information. This ability to modify communication
on the basis of receivers’ needs might include, for example, the ability to re-
code spatial information on the basis of the relative position of the ‘speaker’
and the ‘hearer’ or the ability to detect the adaptive needs of target agents.

3. The ability to approach other agents in order to communicate, to potentially
receive communicative information, to select good learning experiences or to
achieve joint shared attention (on the last aspect see Billard and Dauten-
hahn, 1999).

4. The ability to regulate the communication flows by taking turns (Iizuka and
Ikegami, 2003a,b) or more generally the ability to carry on communication
behaviours consisting of several bi-directional communication acts.
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5. The ability to increase communication success through a ritualised form of
interaction (Steels, 1999) between communicating agents (e.g. a communica-
tion protocol in which the hearer repeats the detected communication signal
and waits for a confirmation from the speaker).

6. The ability to communicate through signals with time-varying properties or
sequences of signals eventually structured according to a given grammar.

Obviously, the full set of abilities is only required in complex forms of commu-
nication. Simple communication forms, such us signalling of danger situations,
in which: (1) few different signals are needed to communicate the relevant infor-
mation, (2) communication acts occur only sporadically, and (3) communication
acts have a priority on all other types of activities and are relevant for all mem-
bers of the population; communication might successfully emerge without the
need of any communication protocols.

3.4 Open research problems: identifying the conditions
that might lead to the emergence of ECAgents

While in the previous Section we tried to identify the functional components
that should be integrated to lead to complex forms of communication, in this
section we will try to identify the conditions that might lead to complex forms of
interaction and communication. Given the difficulty of the enterprise, our goal is
not the attempt to answer to this question, but simply to identify open problems
and sketch some interesting research directions.

3.4.1 How communication can emerge as a result of indirect
selective pressure

One first important open question concerns whether non-trivial forms of commu-
nication can evolve as a result of an indirect selective pressure originating from
the need to solve a given adaptive problem. This question involves two aspects:
(1) the identification of the structural, cognitive and behavioural prerequisites
for the emergence of complex forms of communication, and (2) the identification
of the situations (i.e. the class of problems and/or the environmental and social
conditions) that might exert an adaptive pressure to communicate. While in the
previous section we focussed on the former issue, in this section, we will focus
on the latter.

As we claimed in the introduction, the attempt to evolve communication
without explicitly rewarding communication is crucial in order to allow the emer-
gence of a self-organization process in which: (a) communication abilities and
communication systems are not indirectly predetermined by the experimenter,
(b) communicative and non-communicative behaviour can freely co-evolve and
co-adapt, and (c) individuals are free to determine the most effective way to
categorise sensory-motor information. However, this leaves open the problem of
determining the conditions in which indirect selective pressure on communica-
tion can be expected.
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In their pioneering work on evolution of communication Werner and Dyer (1992)
suggest that an evolutionary pressure on agents to communicate should be ex-
pected in cases where “animals [agents] have information that other animals
needed to know but were not capable of finding out by themselves” (Werner and
Dyer, 1991 pp.661). This general hypothesis might be further detailed by iden-
tifying the conditions in which this situation occurs. Indeed, we might identify
at least the following cases:

1. Information related to the internal states of an individual beyond the
nervous system (e.g. hormones, internal organs, immune system, emotional
states etc.). This information might be highly valuable in order to determine
how socially interact properly. Moreover, information related to the internal
states of an individual might indirectly provide compact cues on the
previous sensory-motor experiences of that individual.

2. Information related to the current sensory state experienced by an individual
(e.g. sensory information indicating the presence of a predator). This form
of information might be useful to other individuals that, by being located
in different positions and orientations or by not being provided with the
same sensing capabilities might not have access to it.

3. Information related to what an agent is going to do (e.g. information related
to the action that an agent is going to perform or related to more abstract
intentions of an agent).

4. Information about the external environment collected by an agent during its
previous interaction with the environment (e.g. information on the location
of a food source that is no longer in the agent’s sight).

Other aspects that might co-determine whether or not an indirect selective
pressure on communication could be expected regards the relation between indi-
vidual and collective interests (an issue that will be discussed in the next section),
the nature of the problem (i.e. whether or not the problem requires cooperation),
and the relative organization of the interacting agents (whether the problem re-
quires specialization and whether agents can assume different specialized roles).
With respect to the last aspect, a selective pressure on the emergence of commu-
nication might more likely be expected in a team of homogeneous rather than in
non-homogeneous agents. As showed by (Haynes and Sen, 1997, 1995) in fact,
while agents that are not specialized might need to communicate to negotiate
their role on the fly, specialized agents do not need to communicate in order to
negotiate their relative roles.

3.4.2 Adaptive factors in the evolution of communication

Beside the problem of determining how a given problem might exert an indi-
rect adaptive pressure on the emergence of communication, we should be able
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to identify the conditions in which communication might emerge evolutionarily.
The emergence of communication in fact, requires the development of two com-
plementary but independent abilities: an ability to produce signals (from the
point of view of the signaller) and an ability to appropriately react to received
signal (from the point of view of the receiver). When selection operates at the
level of individuals, two aspects might prevent the emergence of communication,
namely: the lack of an adaptive benefit for the signaller and the conflict between
individual and collective interests. For a detailed account of conflicts of interests
in evolutionary theory, see chapter X by Hammerstein.

The first problem is due to the fact that in many cases, also occurring in
natural communication (e.g. in the case of alarm calls), signalling behaviours
provide an adaptive advantage for the receivers but not direct benefits for the
signaller. This lack of an adaptive advantage from the point of view of the sig-
naller, might prevent the preservation of genetic characters that lead to signalling
behaviours that are useful for the receivers and for the group as a whole. The
second problem is due to the fact that, even in cases in which communication
emerges, the evolved strategies are not stable and are easily invaded by mutants
that produce different signals. In this condition in fact, mutant’s fitness will re-
main the same while the fitness of the other members of the population, that
are unable to correctly interpret mutant’s signals, will decrease. This selective
advantage gathered by the mutant to the expenses of the other individuals and
of the population as a whole will allow mutant individuals to leave more offspring
and will consequently lead to the loss of the ability to communicate according
to the previously evolved communication system. For a simple demonstration
of how communication fails to evolve in a population of disembodied agents in
which communication only provides an adaptive advantage for the receivers, see
Oliphant (1996). For a demonstration of how the evolutionary dynamics might
lead to an instable situation in which an ability to communicate periodically
evolves and then is lost due to mutant signallers invading the population, see
Batali (1995) and Mirolli and Parisi (in preparation).

As demonstrated in several experimental studies, however, other factors
might counter-balance these adaptive problems and might lead to the emergence
of a stable communication system. For instance a stable communication system
emerges in experiments in which: (1) the population is spatially distributed and
individuals are more likely to communicate and mate with those close to them
(Oliphant, 1996), (2) the same set of internal neurons of agents’ controller de-
termine both the motor and signalling behaviour of the agent and receive both
sensory and communicative information (Cangelosi and Parisi, 1998), (3) agents
(provided with the same neural architecture described above) receive communi-
cation signals only from their parents and are allowed to communicate only after
a first evolutionary phase in which they can develop their individual capabilities
(Marocco et al., 2003). In any case, although these and other ecological factors
(see Di Paolo, 1998; Noble et al., 2002) might counter-balance the lack of di-
rect benefit for signalling and the advantage for individuals to deceive, these two
factors will in any case tend to prevent the emergence or the preservation of com-

28



munication. Indeed, if we compare the experiments described in Cangelosi and
Parisi (1998) and Marocco et al. (2003) that differ with respect to the complex-
ity of the problem, we can see that why in the former the constraint on agents’
neural architecture were enough, in the latter communication only emerged by
also restricting communication acts between parents and by allowing individu-
als to evolve their individual ability before communicating. The question of how
complex communication systems can emerge without a direct benefit for the
signaller therefore largely remains an open problem.

Obviously, these adaptive problems do not affect (or at least are much less
important) in cases in which communication provides an adaptive benefit for
both producers and receivers. This is the case, for example, of mating signals
(for an example of how this type of communication might emerge in a population
of artificial agents, see Werner and Dyer (1991)).

Finally, these adaptive problems do not affect (or at least are much less
important) in cases in which agents are selected on the basis of their collective
performance (Baldassarre et al., 2003; Quinn et al., 2003). Interestingly, a similar
situation occurs in colonies of some social insects (e.g. in bees) in which most of
the individuals are sterile and in which individuals are very genetically related.

For a discussion of coordinated behavior and cooperation in social insects
and their relation to selective and behavioral factors see chapter 4 by Floreano
and Keller and chapter 6 by Deneubourg.

3.4.3 Social Learning and Culture

Agents might develop an ability to communicate and a shared communication
system phylogenetically (i.e. through changes occurring over generations) or on-
togenetically (i.e. through changes occurring during agents’ lifetime). While in
the former case characters that allow communication are encoded genetically
and are transmitted and varied during agents’ reproduction, in the latter case
the characters that allow communication are transmitted and varied through
social learning. These two modalities are also referred to with the terms: genetic
evolution and cultural transmission or cultural evolution (for an example of how
cultural evolution might lead to the emergence of an ability from scratch through
variations arising during social imitation and selective reproduction, see (Denaro
and Parisi, 1996)). Cultural transmission and evolution plays a central role in
human language but it also plays a role in some forms of animal communica-
tion (e.g. in monkeys, squirrels, birds etc., see Wagner et al., 2003b). Moreover,
when both genetic and cultural factors are present, communication emerges as
a result of the interaction between three adaptive processes: genetic evolution,
individual learning, and cultural evolution (or social learning) that have different
characteristics and operate at different time scales.

The issue of how artificial evolution, online adaptation, and social learning
techniques might be effectively combined together is a largely unexplored
research area in this field. Indeed, although methods that combine evolutionary
and learning algorithms (e.g. evolutionary algorithms with reinforcement
learning algorithms or with hebbian learning algorithms) have been already
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proposed and investigated by several authors (see Nolfi and Floreano, 1999;
Nolfi, 2002a), the study of social learning in situated agents is an area that
is gathering an increasing research attention but that it is still in its infancy
(Lindblom and Ziemke, 2003). The attempt to combine social learning and
evolutionary techniques is a largely unexplored area (for a preliminary attempt
in this direction and a critique of obtained results see MacLennan and Burghardt
(1993); Noble and Cliff (1996)).

Advances in social learning techniques and methods for combining evolu-
tionary and social learning techniques might produce significant insights on how
complex forms of communication(s) might emerge from the interaction between
situated agents. Indeed, social learning has specific features that might greatly
enhance agents’ ability to acquire complex skills. As an example of these features
we should consider that in social learning agents play two roles (a student role
and a teacher role) and consequently might improve both their ability to learn
from others and their ability to facilitate other agents’ learning. In other words,
agents that learn socially might exploit the fact that the social environment with
which they interact during learning, unlike the physical environment, has been
co-evolved to favour the ability to acquire adaptive skills through learning (at
least in the case in which interacting agents have an interest in cooperating). As
an example of the advantages that might arise by combining evolutionary and so-
cial learning adaptive processes, we should consider socially acquiring skills from
different agents allow individuals to combine several adaptive characters inde-
pendently discovered by different individuals and resulting from both genetic
and ontogenetic variations. Genetic assimilation (Baldwin, 1896; Waddington,
1942) might later assure the genetic fixation of characters previously acquired
ontogenetically, where appropriate.

3.5 Discussion

The attempt to develop agents able to solve collective problems by cooperating
and communicating through a self-organizing process is an extremely ambitious
goal. Achieving this goal, in fact, imply to understand which initial conditions
might lead to the emergence of a complex behavioural, cognitive, and social
abilities. Moreover, the attempt to develop these abilities in embodied and sit-
uated agents introduces other important challenges (e.g. the need to deal with
noisy and incomplete information, the need to extract regularities by integrating
information in time and/or the need to produce sequential behaviours).

Despite this enormous complexity, the promising preliminary results that we
reviewed and the possibility to integrate important aspects that are actually
studied in isolation in different models indicate that the time is now ripe for
investigating this challenging problem without necessarily rely on shortcuts or
simplifications (e.g. models in which communication involve the exchange of a
predefined list of signals and/or ‘meanings’ or in which the function of commu-
nication is predetermined and fixed).
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Evolutionary Pre-requisites for Emergence of
Communication

Dario Floreano and Laurent Keller

EPFL and University Lausanne, Switzerland

4.1 Introduction

Communication is based on the establishment of a convention between a signaller
and a receiver (Maynard Smith and Harper, 1995). The emergence of such con-
vention requires some degree of coordinated activity and cooperation among
individuals. It is therefore necessary to understand the evolutionary conditions
that enabled relatively simple (with respect to humans) organisms to display
non-trivial levels of coordination and cooperative behaviour, such as ants and
honeybees. In this section we review the open questions, challenges, and current
understanding on the emergence of cooperation, communication, and division of
labour in societies of biological and artificial agents. We also suggest possible
experimental methods to tackle such questions and challenges.

Ants compose about 15 percent of the entire animal biomass of most terres-
trial environments (Hölldobler and Wilson, 1990). The ecological impact of their
diversity and abundance is commensurate with their dominance: they turn more
soil than earthworms, and act as keystone species in a wealth of predatory and
mutualistic interactions with other organisms (Hölldobler and Wilson, 1990).
Without question, the primary feature of their biology that has contributed
to their enormous success is their complex social organisation (Wilson, 1971;
Seger, 1991; Bourke, 1991; Keller and Chapuisat, 2001), which features coordi-
nated behaviour, signalling, cooperation, altruism, and division of labour. We
think that at least the first three features are necessary (although they may not
be sufficient) for the emergence of communication in societies of organisms. It is
therefore crucial to understand how such complex social organisation evolved in
order to infer principles and mechanisms that may be applicable to societies of
artificial agents.

Because all types of sophisticated social organisations occur in insects and
vertebrates, which invariably have relatively long generation time (Keller and
Genoud, 1997; Bourke, 1999), it is impossible to study the origin of complex
social organisation by guided evolution (a process where the evolution of a trait
can be followed by breeding organisms under different selection regimes). To
circumvent this problem, one could use a system of artificial ants implemented
as small mobile robots with simple vision and communication abilities that are
evolved by means of genetic algorithms (Nolfi and Floreano, 2000). In order to
do so, it would be interesting to evolve robot control systems and study their
behaviour under two different levels of selection (individual and colony level) and



under different types of group structure (high and low relatedness) for reasons
that are explained more fully below.

Such experiments should not only help to understand the evolutionary condi-
tions that led to the emergence of complex social organization suitable for com-
munication, but also generate guidelines for the design of autonomous agents
capable of efficient cooperation and task self-allocation. So far, researchers have
mainly equipped robots with hand-designed mechanisms to achieve emergent
cooperation and communication. The use of artificial evolution to synthesize
robots able to display collective behaviour and communication is still a rather
unexplored area.

The following sections present the state of research in the two main facets of
this research endeavour, namely, a) cooperation and division of labour in social
insects, and b) cooperative robotics.

4.2 Cooperation and division of labour in social insects

Social insects (ants, wasps, bees and termites) fascinate due to their extreme
levels of cooperation and social cohesion. They indeed provide some of the most
remarkable examples of altruistic behaviour, with a worker caste whose individ-
uals forego their own reproduction to enhance reproduction of the queen. The
level of such worker self-sacrifice can be extreme, as exemplified by the evolution
of kamikaze weapons, such as detachable stings and exploding abdomens used
in defence of the colony (Wilson, 1971). Workers also collectively exhibit highly
organised, sophisticated behaviour that is adaptively fine-tuned to ecological con-
ditions. For example, workers of some ants react to the presence of workers from
other colonies, and the heightened risk of conflict, by increasing the production
of soldiers, which are specialised in colony defence (Passera et al., 1996). The
honeybee waggle dance communication system provides yet another example of
the sophistication of the aggregate behaviour of social insect workers (Seeley,
1995). Such examples of group harmony and cooperation have given rise to the
concept that colonies are harmonious fortress-factories in which individual-level
selection is muted, with the result that colony-level selection reigns. In other
words, the colony often appears to behave as a super-organism operating as
a functionally integrated unit (Wheeler, 1928). In this vein, Seeley (1997) has
described the elegant group-level adaptations of honeybee societies.

However, the concept of a super-organism as being the only unit at which
natural selection operates has been challenged both on theoretical grounds and
by the observation that life within the colony is not always as harmonious as it
may first appear. The more we come to understand the dynamics of life in the
society, the more we realise that the colony is far from simply being a super-
organism emerging from a nexus of self-sacrificing altruism (Ratnieks and Reeve,
1992; Bourke and Franks, 1996; Crozier and Pamilo, 1996; Bourke, 1999; Keller
and Reeve, 1999). Social life may involve conflicts of genetic self-interest, re-
sulting in tactics of coercion, manipulation and even deadly aggression between
colony members in the name of genetic self-interest. These conflicts arise because
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colony members should favour individuals that are more closely related (share
more identical gene by common ancestry) to maximise their inclusive fitness
(Hamilton, 1964a). Since the pattern of relatedness to a set of individuals differs
for different colony members within genetically heterogeneous insect societies,
and since the colony has finite amounts of resource to allocate, the stage is set
for a multitude of potential conflicts (Hamilton, 1964b). These conflicts, in turn,
have negative effects at the colony level because they may decrease the overall
productivity.

These costs at the level of the colony are expected to lead to counter-strategies
to suppress selfish behaviours (Ratnieks, 1988; Reeve et al., 1997). In other
words, the actual conflict should generally be lower than the potential conflict
(Ratnieks and Reeve, 1992). Understanding exactly how and to what degree
actual conflict is suppressed and how this increases overall group productivity
is the key to understanding the extent to which social insect colonies can be
viewed as adaptively organized group-level units (Seeley, 1997).

To study the evolutionary outcomes of within colony conflicts it is helpful to
use a multi-level selection approach (Keller and Reeve, 1999). Although genes
are the entities that are ultimately transmitted over generations, it is important
to keep in mind that genes are packaged in organisms, organisms in groups, and
groups in populations, and that selection theoretically may act at any of these
levels. Selection acting within and between colonies can be analysed by using
a multi-level analysis of selection. However, it is very difficult to empirically
quantify the selective forces acting at the different levels of organisation of the
colony. An alternative approach would be to use guided selection and modify
the strength of selection at the individual and colony levels. Unfortunately, this
is not possible due to the relatively long generation time of social insects.

To circumvent this problem, one may resort to a new experimental system
consisting of colonies of artificial ants implemented as small mobile robots with
simple vision and communication abilities. Such a system would allow the in-
vestigation of the role played by the level at which selection acts (colony versus
individual) as well as of the group composition (relatedness between individu-
als) on the evolution of communication and altruism. Relatedness is known to
have played a major role in favouring the evolution of altruism in social insect
(Bourke and Franks, 1996; Sundstrm et al., 1996; Keller and Reeve, 1999) and
other animals and such experiments would help to determine whether the role
of relatedness can be experimentally demonstrated with artificial agents such as
robots engaged in tasks where communication provides a selective advantage.

Such an experimental setup would also allow one to study the evolution
of another unusual characteristic of social insects, namely division of labour
between workers (the sterile individuals performing almost all the work in the
colony). That is, in addition to the reproductive division of labour between
queens and workers, work is further partitioned among workers (Wilson, 1971;
Bourke and Franks, 1996). Workers can specialise on particular tasks (e.g., brood
care, nest construction, nest defence, foraging).
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The basic problem faced by a colony is to dynamically allocate the right
number of workers to the various tasks. One mechanism for dynamic task allo-
cation has been observed in some species of ants and bees, where workers change
their tasks according to age. Young individuals typically work on internal tasks
(brood care and nest maintenance), while older individuals forage for food and
defend the nest (Wilson, 1971). But recent research has shown that ant workers
are usually able to switch tasks when needed, for example if one behavioural
caste is experimentally removed (reviewed in Bourke and Franks, 1996). Hence,
a forager can become a guard, or a nurse can become a forager independently
of their age. This plasticity of individual behaviour allows colonies to adapt to
changes in their environment and also to demographic changes in the colony.
Colony members might change their behaviour according to a self-organising
mechanism where workers perform a task when a specific stimulus for this task
exceeds its individual threshold (Deneubourg et al., 1987; Bonabeau et al., 2000;
Anderson and McShea, 2001; Anderson, 2002; Gautrais et al., 2002). Tasks and
stimulus are linked in a negative feedback loop that regulates the system: when
an individual performs a task, it decreases the stimulus for this particular task.
To test these hypotheses one should measure whether behavioural plasticity and
negative feedback loops can evolve in groups of artificial ants and, if so, deter-
mine the conditions that are conducive to their evolution.

4.3 Cooperative robotics

Synthesis and analysis of collective behaviour from individual interactions rep-
resent a major challenge in both ethology and artificial intelligence (Bonabeau
et al., 1999; Camazine et al., 2001). Accomplishing tasks with a system of mul-
tiple robots is appealing because of its analogous relationship with populations
of social insects. Researchers argue that cooperating teams of simple robots can
accomplish useful tasks that a single robot could not possibly do. In a survey,
Cao et al. (1997) defined cooperative behaviour as follows: given some task spec-
ified by a designer, a multiple-robot system displays cooperative behaviour if,
due to some underlying mechanism (i.e., the mechanism of cooperation), there
is an increase in the total utility of the system.

We can distinguish three mechanisms that have been used so far for achiev-
ing cooperation among robots: a) self-organization (emergent cooperation), b)
explicit cooperation through task-related communication (intentional model of
cooperation), and c) cooperation by learning.

a) Emergent cooperation. Interest has focussed on how to develop a decen-
tralized approach to control a multi-robot system without explicit commu-
nication among the robots. The hypothesis is that a decentralized, non-
communicating system should scale more easily with the number of robots
(Kube and Zhang, 1993). Cooperation here emerges according to a princi-
ple where a robot’s action is determined or influenced by the consequences
of another robot’s previous action, similar to the phenomenon of stigmergy
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(Bonabeau et al., 1999). Experiments with robots have successfully exploited
this principle to perform a number of tasks. For instance, Holland and Mel-
huish (1999) used a group of physically-identical robots to cluster and sort
objects of two different types. Using a behavioural rule set much simpler
than those proposed so far, and having no capacity for spatial orientation or
memory, robots were able to achieve effective clustering and sorting, similar
to ant brood sorting where ants sort their brood so that items at similar
stages of development are grouped together. In another experiment, Kube
and Bonabeau (2000) worked on a transport task, where the objective was to
locate a brightly-lit box and move it to a goal location. The box was weighted
such that at least two robots were needed to move the box. The robots did
not explicitly communicate and were not centrally controlled. Although an
optimal solution was not found, the robots always managed to push the box
towards the goal. Finally, a third experiment addressed a stick-pulling task
(Ijspeert et al., 2001 after Martinoli and Mondada, 1995). The objective is to
locate sticks in a circular arena and to pull them out of a hole in the ground.
Because of the length of a stick, a single robot is not capable of pulling it out
alone. Collaboration between two robots is thus necessary for pulling a stick
completely out. By providing robots with a simple time latency, cooperative
stick-pulling emerged without explicit communication and coordination as
a probabilistic phenomenon depending on the size of the working area and
the number of robots.

b) Explicit (intentional) cooperation. Gerkey and Matarić (2002) developed a
model where robots cooperate explicitly and with purpose, often through
task-related communication. The authors claim that intentional cooperation
is better suited than emergent cooperation for tasks that humans would
like robots to perform. They presented a novel method of dynamic task
allocation for multi-robot systems based on simple auctions to allocate tasks.
The results indicated that the system could take into account various changes
in the environment. When compared to emergent cooperation, this approach
requires a bigger overhead at the level of communication.

c) Cooperative robot learning. Some researchers have explored the idea of pro-
viding robots with learning capabilities to coordinate robot interactions and
improve team performance. However, learning in physically embedded robots
is known to be a difficult problem, due to sensor and actuator uncertainty,
partial observability of the robot’s own environment, and dynamic properties
of the environment, especially when multiple learners are involved (Mataric,
1998). Moreover, most learning approaches used in cooperative robotics do
not appear to be scalable, because they imply for each learning robot a state-
space growth exponential in the number of team members. Touzet (2000)
recently proposed to exploit robot awareness, defined as the perception of
the locations and actions of other robots, in order to improve cooperative
learning. However, in real environments (as opposed to simulations) this ap-
proach requires a reliable radio communication and rich information on the
state of each robot in the team.
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Experimental studies indicate that another important factor in the emergence
of cooperation among robots is the composition of the group. Two major factors
are a) the size of the group and b) the physical and behavioural diversity of
individual robots.

Krieger et al. (2000) studied the effect of group size in teams of robots pro-
grammed with ant-inspired algorithms in a foraging task. To determine the re-
lationships between group size and efficiency, they compared groups of 1, 3, 6, 9
and 12 robots. Groups of intermediate size performed better, which is probably
due to a trade-off between the positive and negative effects of robot-robot inter-
actions. Because robots were programmed to avoid each other, groups of robots
exhibited a more efficient coverage of the foraging arena than single robots.
When the number of robots increased, however, negative interactions among
robots (here defined as robots interfering with each other when trying to per-
form a task) also increased. A similar conclusion was recently reached by Lerman
et al. (2002) in the case of the stick-pulling task mentioned above.

Balch and Parker (2000) argued that heterogeneity is an important focus of
multi-robot systems research; one of the most compelling is the observation that
it is nearly impossible in practice to build a truly homogeneous robot teams
because several copies of the same model of robot can vary widely in capabilities
due to differences in sensor tuning, calibration, etc. Based on this hypothesis,
the Alliance architecture (Parker, 1998) has been proposed as an approach to
dynamically assigning tasks to different members of a robot groups and was
demonstrated on a group of robots dividing a clean-up task. Parker used a group
of robots with a priori hard-wired heterogeneous capabilities (Parker, 1994).

Finally, Fontan and Mataric (1998) addressed both group size and group
diversity in a problem of dynamic task assignment (see also Anderson and Rat-
nieks, 1999; Labella et al., 2004). They studied a territorial approach to a task
where robots are assigned individual territories that can be dynamically resized
if one of the robots fails. Using a collection of experimental robot data, they re-
ported a decline of performance of space division strategy with increasing group
sizes. Similar to the results obtained by Krieger et al. (2000), a medium-size
group of robots was the most efficient choice given the trade-off between inter-
ference and workload in the particular territorial division.

To summarize, the prevailing approach in collective robotics is to provide
robots with a set of predefined algorithms for cooperation and communication
and observe the team performance by varying environmental variables and/or
team size. The question of the relationship between team similarity (physical
and behavioural) and emergence of cooperative behaviour and communication
remains still open. The same applies to the emergence of division of labour in
groups of robots. To the best of our knowledge, there have not yet been attempts
to use an evolutionary approach to investigate these issues in a systematic frame-
work. Cooperation, division of labour, and communication are major challenges
in collective robotics where teams of robots are expected to autonomously coor-
dinate in order to carry out tasks that a single robot could not do.
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Game-Theoretic Challenges

Peter Hammerstein
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5.1 Introduction

Modern evolutionary biological theory is, in large part, a theory of conflicts of
interest and how they are managed. Conflicts exist among, and even within, or-
ganisms. Gene-level conflict arises, for example, if some genes could increase their
rate of reproduction at the expense of others. For example, gene-level conflict
can be caused by differing modes of reproduction. If some genetic elements can
only reproduce via the egg cytoplasm, these elements will have little ‘interest’
in male reproduction.

Organism-level conflict arises when organisms compete for the same, lim-
ited resources, like food or mates. Alleles that code for successful competitive
strategies will out-reproduce alternative alleles. Organisms will therefore tend to
acquire abilities and strategies for competition both within, and across, species.
Conflicts of interest are deeply embedded in the very foundations of life.

Important transitions in evolution occur when strategies arise that can over-
come these conflicts (e.g., Maynard Smith and Szathmáry, 1997). Modern bi-
ology has focused considerable effort on formulating theories that can explain
cooperation and reliable communication despite inherent conflicts of interest—
biologists assume conflict, and then investigate how nature has overcome it. A
biological theory is considered a success when it successfully explains how or-
ganisms manage conflict, even if many other details of organism interaction are
left unexplained.

IT infrastructure, on the other hand, is often not designed with conflicts of
interest as a founding principle. Instead, the infrastructure is assumed to serve
the needs of multiple parties, and measures to manage conflict, like passwords
and encryption, are added after the fact. IT infrastructure is engineered to effi-
ciently solve problems like reliable and efficient communication in large networks
of increasingly heterogeneous agents. These are exactly the problems that be-
havioral ecologists in biology tend to sweep under the rug—if conflicts of interest
can be overcome, then the remaining problems are simply engineering ‘details’.

We believe biologists studying communication and cooperation have a lot to
learn from IT research in these areas. IT, on the other hand, might also be able
to learn something from biologists’ obsessive concern with conflicts of interest.
The internet, for example, is ridden with viruses, worms, and other malware that
threaten its utility to the public.

Here we outline what we consider to be potentially important applications of
biological theory to the design and implementation of embodied, communicating



agents that are robust (but not entirely immune) to parasitism, deception, and
free-riding. We focus not on mechanistic details, but on broad, strategic insights.

5.2 Challenge I: Avoiding infection—Immune system
analogies

Organisms harvest energy and other resources from the environment, converting
them into useable form. Because organisms are concentrated packets of energy
and other nutrients, and because organisms can also provide other benefits,
like transportation and a regulated environment, they themselves represent an
extremely valuable resource that other organisms could exploit. Indeed, virtually
no complex, multi-cellular organism is pathogen free. But, pathogens damage
their hosts, and impose other costs, so there has been a strong selection pressure
to deter and eliminate infections.

5.2.1 Self identity and cross-agent diversity

There are several important properties of organisms that deter parasites. The
following are two of the most important of these. First, many complex organ-
isms have an ability to identify self. This allows an organism to identify and
eliminate non-self, thus disposing of many parasites and toxins. Second, in many
species, individual organisms differ somewhat from one another at the molecular
level. This decreases the ability of parasites to efficiently exploit the organism,
because what works well in one organism might not work so well in another
with a somewhat different composition. A single strategy would have difficulty
successfully infecting and exploiting multiple hosts. The second property means
that organisms have to learn to identify themselves (because they will differ from
their parents).

Ideally, an organism would have a perfect ability to identify self, and despite
functioning similarly, or identically, to other members of its species, would differ
substantially from them in its ‘implementation’ details. Real organisms achieve
these goals in some of the following ways. Gene pools typically contain a signif-
icant degree of variation. This means that several alleles at each locus produce
proteins with similar functionality, but somewhat different structures. Sexual
recombination results in offspring with a random assortment of these different
alleles. Thus, when an individual learns to identify itself, its protein ‘fingerprint’
is different from that of every other member of its population. Parasites find
it difficult to mimic host protein patterns (which would allow them to evade
the immune system), because there is no single pattern in the population. In
addition, the protein structure of each individual is unique, so infection and
exploitation strategies cannot hone themselves to a uniform host environment.

Here we sketch one way to achieve similar properties in EC agents. First, for
the sake of discussion, assume an agent contains 30 software modules with pre-
defined functions. Code each of these modules to spec using independent teams
for each module, each team using a different programming language (e.g., C#
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and Java) and/or different compilers or virtual machines. This results in 30 pairs
of modules, with each module in a pair performing the same function, but using
code that is completely different, at least at the binary level, but also perhaps
at higher levels. Form each EC agent by randomly selecting one module from
each pair, for each of the 30 pairs. Each EC agent will then function similarly,
but will contain a unique combination of modules (30 pairs of modules can be
combined in about 1 billion different ways). Each EC agent can then learn what
its unique combination of modules is, either by computing a hash on the module
binaries, by analyzing subtleties of module behaviour (modules should function
almost, but perhaps not quite, identically), or by other means.

However it is achieved, EC agents must have a robust ability to identify self.
This will become especially important if EC agents reproduce. Self reproduction
means that it will be difficult, if not impossible, to ensure that agents are initially
infection-free (because agents will not be produced in ‘pristine’ environments).
Agent parents might have to provide offspring with ‘antibodies’ to parasites they
themselves are infected with. EC agents must also differ substantially from each
other at the implementation level, however closely they resemble themselves at
the functional level. For similar work on immune system analogies in IT security,
see, e.g., Kephart (1994), Somayaji et al. (1997), Somayaji and Forrest (2000),
and Forrest et al. (1997).

5.2.2 Virulence

Keeping EC agents free from infection might be an unreasonable goal. Infection
with ‘mild’ strains of pathogens might even be beneficial to the extent that they
exclude more virulent strains. There are a number of arguments and counter
arguments regarding the evolution of virulence (see Ewald, 1994 for one influen-
tial view). Almost all agree that parasites will evolve traits that maximize their
own reproduction. In some cases, this will involve a devastating exploitation of
the host, quickly leading to host death. In other cases, host exploitation is min-
imal. And in yet other cases, parasites and hosts co-evolve a mutually beneficial
symbiosis. If parasite transmission requires proper host functioning, then the
ecology of parasites infecting EC agents will necessarily tend to exclude those
that seriously impair EC agents. EC agent communication systems should there-
fore carefully consider the modes of communication. If a communicative act can
transmit, e.g., code, and this code could become infected, then it is important
that communication require that the EC agent exercise many of its functional
abilities. Here is a simple illustration of this idea. If an EC agent transmitted
information by executing a complex dance, then any parasite replicating via this
channel could not significantly impair the ability to dance. If dancing ability were
dependent on functionality that was essential for other key tasks, like obtaining
energy, then parasites could not seriously impair these key abilities because by
doing so they would impair the ability to dance, and therefore their own ability
to reproduce. By tightly linking modes of infection (e.g., communication chan-
nels) with other essential functions, populations of EC agents should be able to
tolerate a broad spectrum of infections.
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5.3 Challenge II: Signaling and communication when
there are conflicts of interest

A signal is “an action or structure that increases the fitness of an individual
by altering the behaviour of other organisms detecting it, and that has char-
acteristics that have evolved because they have that effect” (Maynard Smith
and Szathmáry, 1997). Crucially, signals evolve because they provide fitness
benefits to the signaler, not to the recipient (Dawkins and R., 1978). Between-
organism signals therefore often contain a substantial dose of deception. Mimicry
and crypsis, for example, are extremely common in vertebrates, arthropods and
opisthobranch gastropods (Starrett, 1993). EC agents may wish to employ var-
ious forms of deception, like camouflaging themselves to avoid danger, and they
will certainly need mechanisms for detecting deception.

Deceptive signals select for ever better signal discrimination on the part of
signal receivers, which selects for more effectively deceptive signaling, and so on.
Deceptive signaling/detection arms races need not always characterize signaling
systems, however. A number of mechanisms exist whereby honest signaling can
evolve. The best known is ‘costly signaling’ (Spence, 1973; Zahavi, 1975). If a
signal has an inherent fitness cost, then signals can only be sent by individuals
who can afford the signal. The signal is then an honest indicator of the quality
of the sender. Male red deer, for example, engage in costly bouts of roaring when
competing with other males. Because roaring is physiologically taxing, animals
in poor condition cannot roar at the same rate as animals in good condition. The
roaring rate is an honest indicator of body condition, and thus fighting ability
(Clutton-Brock and Albon, 1979).

More generally, if a signal has a necessary correlation with a property of
the sender, then the signal is an honest indicator of this property, even if the
signal is not costly (Maynard Smith and Szathmáry, 1997). Funnel web spiders,
Agelenopsis aperta, fight over web sites (Riechart, 1978). Spiders contesting on
a web vibrate the web, and the vibrations transmit reliable information about
relative body mass. If the difference in body mass exceeds about 10%, the smaller
spider withdraws (Hammerstein and E., 1988).

The essence of honest signaling theory is what is variously termed private,
incomplete, or asymmetrical information—some participants in a social interac-
tion have difficult-to-observe qualities that are critical to the decision-making of
other participants. One example of private information that could be potentially
important to EC agents is whether or not they are infected with a virus. If so,
other agents might not want to interact with them. EC agents might only inter-
act with other agents that are able to demonstrate that they do not suffer any
major infection. If infections impair functionality, then demonstrating a large
range of complex functionality would reassure potential social partners that no
major infections were present. Returning to the dance example, a complex dance
that exercised numerous abilities with precise timing could honestly signal that
no major, disabling infection was present. After successful dance displays by
potential communication partners, communication could then commence with
(relative) confidence.
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Honest signals can also evolve when there is little or no conflict of interest
between sender and receiver, or when sender and receiver have a mutual interest
in coordination. Signalling systems in eusocial insects like ants and bees are
typical examples. In these cases, the signals should have exceptionally low fitness
costs (Markl, 1985). Such ‘cheap’ signals can also evolve when there are future
interactions between sender and receiver, and when the receiver can punish false
or deceptive signals by, e.g., attacking the sender of false signals or defecting
from repeated future cooperative interactions to the deficit of the sender (e.g.,
Silk et al., 2000; and references therein). In addition, low-cost signals can evolve
when signalers receive no benefits from deceiving their partners (Dawkins and
Guilford, 1994).

Human language is a highly sophisticated system for ‘cheap’ signalling—
speaking imposes few costs on the speaker. Further, there is no necessary cor-
relation between properties of the speaker and the semantic content of speech.
The existence of language therefore testifies to an evolutionary history in which
interactions among individuals commonly involved few conflicts of interest, de-
pended heavily on coordination, or were repeated with opportunities to punish
lying. More likely, some combination of these factors permitted the evolution of
language (Lachmann et al., 2001; Silk et al., 2000).

5.3.1 Lies, exaggerations, and misrepresentations

Although most speech should be basically honest, speech can be deceptive when
“on average, the incentive to the signaller to misrepresent the state of the world
[is] outweighed by the incentive not to do so” (Lachmann et al., 2001, p. 13189).
Lying can confer social benefits, such as misleading competitors, extracting ad-
ditional resources from social partners, or avoiding punishment for proscribed
behaviour.

There are obviously strong selection pressures for the evolution of mecha-
nisms to discriminate real signals from deceptive and erroneous signals. These
mechanisms should attend to cues that correlate with signal veracity. IT has ac-
cess to very sophisticated error detection and correction mechanisms. Deception
detection mechanisms, however, are another matter.

Because there are incentives to manipulate information about the social world
for personal benefit, mere repetition of a signal from the same, potentially decep-
tive, source does not decrease the probability of deception in the signal. Receiving
the same information from multiple, independent sources, however, decreases the
probability of deception for several reasons. First, if an individual manipulates
information to serve his or her own individual interest, then the probability that
other signallers share exactly the same interest, and thus an incentive to ma-
nipulate their signals in exactly the same way, will decrease as the number of
signallers increases. Second, deception imposes a severe coordination problem
on multiple deceivers. Whereas there is only one truth, there are many different
deceptions that can serve the same end. Multiple sources who share exactly the
same interest in deception could each generate radically different stories serv-
ing this interest. Without sophisticated, costly coordination, it would be very
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difficult to keep their stories straight. Third, lying invites punishment. Multiple
signallers colluding to deceive would also have to share the same willingness to
risk punishment for lying. The probability that multiple signallers are equally
willing to suffer punishment declines as the number of signallers increases. Thus,
receiving information from multiple sources should be a reliable cue of veracity.

Deceivers do share interests, and can coordinate stories, so receivers should
attend to cues that multiple sources of gossip are independent—that is, one
gossiper did not simply receive the information from another, and, importantly,
the one gossiper does not have an obvious incentive to coordinate a deception
with another gossiper. EC agents will need to be able to detect cues that signal
the sources of information.

Finally, the cost of punishment implies that gossipers should only deceive if
they have an incentive to do so. Gossip receivers should therefore have mecha-
nisms that attend to cues that gossipers have ulterior motives, like competition
for resources.

5.4 Challenge III: Cooperation when there are conflicts
of interest

Competing organisms can often mutually benefit by engaging in various forms
of cooperation. Cooperation should not be seen as an alternative to competi-
tion, but instead as a competitive strategy. Conflicts of interest present severe
problems for cooperative ventures, like the division of benefits and free-riding.
Consequently, biologists have invested enormous effort investigating strategies
which solve these problems.

5.4.1 Mutualism

One of the simplest and most effective solutions is what we will here call mutu-
alism: a cooperative goal can only be reached by the mutual, concurrent actions
of participants, and all participants benefit once the goal is reached. Imagine,
for example, a group of individuals in a boat that would all benefit if the boat
could reach a distant island before other boats did (perhaps because there is
buried treasure on the island). There is no division of benefit problem, because
all benefit if the boat reaches the island first, and there is no free-rider problem
if all must exert maximum effort to have any chance of reaching the island first.
This is the solution ‘adopted’ by the genome. Potentially competing genes all
benefit equally if the organism—which they mutually construct—out reproduces
other organisms, and the organism has the greatest chance of out-reproducing
others if the genes each contribute maximally to the reproductive capabilities of
the organism. Further, this solution permits substantial efficiencies to be realized
by division of labour. Just as the boat would have the best chance of reaching
the island first if each person took on tasks that best matched their abilities—
the strongest taking over the oars, those with the best vision navigating the
boat—so, too, do genes benefit by each contributing different capabilities to the
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organism (genes for eyes, genes for muscles, etc.). EC agents with potential con-
flicts of interest would often benefit if cooperative tasks were structured so that
all agents on a ‘team’ were ‘stuck in the same boat’, as it were.

5.4.2 Bargaining

Sometimes even if one is stuck in the same boat for a time, one won’t be stuck
there forever. In this case, division of benefits can be a problem. When one’s boat
wins the race to treasure island, for example, the treasure must still be divided.
Perhaps the strong will now assert their power to take most of the treasure.
There are situations, however, where even the weak can get their fair share.

Viscous social markets and monopoly power. When there are many resource
providers (when there is a market instead of a monopoly), one has little need to
pay a premium to social partners because one can always obtain the necessary
resources elsewhere (resource costs are then determined by the supply and de-
mand curves of standard economic theory). If, however, there is a high degree
of mutual dependence, and the cost of switching partners is high, a fair division
of benefits can be accomplished by bargaining. By withholding services that are
needed by others, individuals can compel a fair division of benefits. In the boat
example, if individuals need to not only reach the island first, but then escape
before others arrive, individuals who do not receive a fair share of the treasure
can threaten to withhold their services unless the treasure is fairly divided. Since
no one will escape the island with the treasure unless all cooperate, there is a
strong incentive to fairly divide the treasure.

Such bargaining is necessary and effective when 1) at least one participant
is not benefiting from the current social contract, 2) others are benefiting from
the social contract, and 3) participants have a monopoly or near monopoly on
the resources they provide—otherwise, disaffected parties could simply choose
to cooperate with someone else (see Kennan and Wilson, 1993 for a review).

Private information and credible signalling: the function of delay. When the
value of cooperation decreases with time, withholding benefits can also credibly
signal that one truly is suffering costs to those who might not otherwise recognize
those costs. It is difficult for group members to accurately assess the costs and
benefits incurred by their social partners: she claims she is not benefiting from a
relationship, but perhaps she really is and just wants more than her fair share;
her true valuation is private information.

The discount factor, ?, is the fraction of cooperative benefits still available
after each round of bargaining, and is thus a measure of the costs of delay due
to multiple rounds of bargaining. Kennan and Wilson (1993) argue that quick
agreements are usually possible in most models of bargaining where valuations
and discount factors are common knowledge (i.e., no private information). In-
formally, if each participant knows what the other participants know, each will
come to the same conclusions about how any sequence of bargaining rounds will
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proceed; each participant will also come to the same conclusions about the ‘op-
timal’ outcome for other participants, and so this outcome can be offered in the
first round. In a simple game of alternating offers by a buyer and seller, if 0<?<1,
then the maximum benefit decreases as ?t, where t = the number of rounds,
so the seller must make an offer just sufficiently generous such that the buyer
cannot do better by waiting another round—when delay is costly, each party
has an incentive to minimize the number of rounds of bargaining in order to
maximize benefits. It can be shown that if the seller makes the first offer, she
will offer a price that gives her 1/(1+?) of the benefits, which the buyer accepts
immediately (Rubinstein, 1982).

If, on the other hand, the participants in a cooperative venture do not know
how other participants value the potential benefits or the costs they will suffer
from delays, it will be impossible for all participants to reach the same conclu-
sion about the ‘optimal’ agreement. If participants could credibly signal to other
participants their true valuations and discount factors, then an agreement could
be reached. Kennan and Wilson (1993) argue that the willingness of a partici-
pant to suffer the costs of multiple rounds of bargaining (due to discount factors
less than one), coupled with the sizes of the offers made each round, represents
credible information about that participant’s true valuation—a greater willing-
ness to delay signals lower valuations (because the more valuable the potential
benefits from cooperation are to a participant, the less she can afford to de-
lay). Once each participant acquires a relative level of certainty about the other
participants’ private valuation by observing their willingness to incur delays,
the bargaining game becomes equivalent to one where valuations and discount
factors are public knowledge, and an agreement can be quickly reached.

In conflicts over division of benefits, EC agents may well have to bargain by
withholding services until an equitable deal is reached.

5.4.3 Reciprocal altruism

Cooperative benefits can often be realized via gains in trade. If, for example, two
individuals have resources that are more valuable to the other than to themselves
both benefit by trading these resources. But, if neither can guarantee that the
other will reciprocate a transfer of a resource, there is a dilemma (the famous
prisoner’s dilemma): it is in the interest of each to accept a resource but not to
provide one in return (i.e., defect or cheat); therefore neither offers a resource to
the other; therefore both are worse off then if they had traded. If these individuals
could guarantee that the other would reciprocate a resource transfer, both could
realize gains from trade. The best known such ‘partner control’ mechanism is
TIT-FOR-TAT: If there are indefinitely repeated opportunities to reciprocate,
then individuals can garner most of the gains of trade while avoiding most of
the costs of cheating if they cooperate (transfer a resource) on the first round,
and then, in all future rounds simply copy their social partner’s behaviour in
the previous round. A major problem of TIT-FOR-TAT is that it does not scale
to even moderately large social groups. The problem is the following. The only
response to defection by a social partner is to defect oneself. Thus, in a group of
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size n, if one person defects, all must defect. But, as n increases, the probability
that there will be at least one defector increases significantly. Thus, with even
moderately large groups, there is a high chance that there will be at least one
defector in the group, so everyone defects, preventing cooperation. TIT-FOR-
TAT will only allow small groups of EC agents with potential conflicts of interest
to cooperate.

5.4.4 Punishment

Many attempts have been made to discover partner control mechanisms that
can scale to large groups. One such mechanism is punishment. If defectors can
be punished, and if they respond to punishment by then cooperating, coopera-
tion can be sustained in large groups. The reason is that, unlike TIT-FOR-TAT
where the only response is to defect from the entire group (in effect, punishing
the entire group for the defection of one individual), punishment can be directed
at the defector alone. Regrettably, punishment also has some serious problems.
If punishment is costly, then which group member should pay the cost of pun-
ishment? He who punishes does everyone else a favour that is not repaid. Most
solutions to this problem have invoked some sort of group selection.

5.4.5 Costly signalling

Costly signalling is another solution to cooperation like the widespread food
sharing seen in many hunter-gatherer groups. Perhaps individuals provide ben-
efits to others as a costly and therefore honest signal of some hidden quality
(Gintis et al., 2001; Hawkes, 1991; Smith and Bliege-Bird, 2000). If the hunter
who kills the dangerous buffalo gets to marry the prettiest girl in the group,
then it is in his interest to kill the buffalo, feeding everyone, even if others do
not reciprocate by killing buffalo in the future. Although this strategy can scale
to large social groups, the problem with this explanation for cooperation is that
it does not explain why the hunter shares the meat with anyone; neither even
why it is that he hunts. He could equally well signal his skills by killing the buf-
falo but keeping the meat for himself, or by engaging in some other dangerous
task that benefited no one.

5.4.6 Reputation

Reputation is central to several theories of human sociality. In the indirect reci-
procity theories (Leimar and Hammerstein, 2001; Nowak and Sigmund, 1998),
benefits are provided to an individual based on information about his or her
past contributions to others in the group—generous individuals are rewarded by
receiving benefits from group members. This strategy can scale to large social
groups. In the ‘health-insurance’ theories (Gurven et al., 2000; Sugiyama and
Chacon, 2000), individuals increase the likelihood that they will be taken care
of when ill or injured by generously providing benefits to group members when
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they are well. In the ‘show-off’ or ‘costly-signalling’ theories discussed above,
individuals engage in behaviour, such as big-game hunting, that signals their
quality as mates or social partners, and consequently reap valuable mating or
social benefits.

Reputation can also play an important role in reciprocal altruism models
(e.g., Cox et al., 1999; Enquist and Leimar, 1993; Pollock and Dugatkin, 1992).
In these models, individuals learn whether future social partners previously de-
fected or cooperated with other social partners, and benefit from this knowledge.
In more sophisticated versions of these models, if the values of benefits that in-
dividuals provide vary, then individuals should attempt to cooperate with those
who can provide the greatest benefits at the lowest cost.

In each of these models, as several authors have noted (e.g., Enquist and
Leimar, 1993; Leimar and Hammerstein, 2001, information about key behaviours
(such as generosity to others or a successful hunting expedition) must be reliably
transmitted to group members. In other words, one must achieve and maintain
a reputation for being able to provide valuable benefits to others in order to
maximize the benefits one acquires from others. This process requires that in-
formation about one’s capabilities be transmitted among other group members.
Although direct observations are obviously informative in the indirect reciprocity
models, key behaviours may also be communicated to other group members by
the few observers of individual acts of generosity. The show-off/costly signalling
and health insurance models assume that the key behaviours will be directly
observed by those who ultimately provide benefits. But with models too, most
group members will not directly observe who killed the buffalo, but will have to
rely on reports (as well as seeing the dead buffalo) to properly assign credit to
the successful hunter or hunters. Further, although the health insurance models
posit that beneficiaries of past generosity will have a fitness interest in caring for
providers when they are injured, it would be reasonable to extend this model in
the following way: it would be in the fitness interests of all potential beneficiaries
to care for an injured provider (even if some had not been personal beneficia-
ries in the past), because they could benefit from the future generosity of the
provider when she is well. In this extended version, information about individual
acts of generosity must be transmitted to other group members by observers of
these acts.

Both theory and empirical studies suggest that, within groups, access to
resources provided by others is mediated by reputation. This strongly implies
that in order to sustain cooperation, groups of EC agents with conflicts of interest
will have to gossip. But, this raises the specter that agents might manipulate
gossip to increase their own reputations and decrease those of their competitors.
Agents must also have mechanisms to verify gossip (see above section on lies,
exaggerations, and misrepresentations).
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5.5 Challenge IV: Identity

Most of the signalling and partner control mechanisms, especially those that
involve reputation, rely on being able to reliably identify individuals. In humans,
one’s identity is most reliably signalled by one’s face. Although human faces
are extremely similar, humans have also evolved to detect subtle but stable
differences that uniquely identify individuals. These differences arise from the
genetic differences discussed earlier. All humans differ somewhat from each other
genetically, and these differences manifest themselves via ontogeny as stable
differences in facial features. Providing EC agents with stable and difficult to
fake identities will be one of the most important and most challenging tasks
for the project. If there are conflicts of interest, cooperation will simply not
be possible without reliable identification procedures. As it has in humans, the
cross-agent diversity discussed earlier might provide a means to uniquely identify
individuals. For example, some function of an agent’s unique combination of
modules might serve to identify that individual. To fake another’s identity, an
agent would need access to the other’s entire set of modules. Because it may
often be in the interest of agents to fake their identities, much of the burden of
identification will reside with the consumers of this information.

In sum, EC agents with conflicts of interest will find it difficult to either
communicate or cooperate without addressing the problems described here. We
believe these issues must be addressed at every phase and level of EC agent
design.
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6.1 Introduction

One of the challenges of ECagents is building groups of artificial agents. Classi-
cally, in man-made systems, problem-solving is based on the “Knowledge” of a
central unit which must take the decisions and collect all necessary information.
However an alternative method is extensively used in nature: the method of
collective intelligence governed by distributed intelligence. The study of socially
living organisms shows how these groups solve many problems optimally. In such
systems, which may be made of a large number of units, the problems are collec-
tively self-solved in real time through the simple behaviour of the units, which
interact with each other and with the environment. The units are mixed with
the environment and the groups exhibit organizational structures that are func-
tional, robust, and adaptive (Detrain and Deneubourg, 2002). In such systems,
imperfect or local information and randomness are essential ingredients.

Our fundamental hypothesis is that universal rules, at the correct level of
description, govern natural and man-made systems and similar “algorithms”
govern the behaviour of artificial or natural agents performing similar tasks in
similar contexts. Among the different organizational schemes found in natural
systems, we will focus on those that involve self-organization(see explained def-
inition below) and where behavioural positive feed-backs are the keystones of
the organization (Deneubourg and Goss, 1989; Parrish and Edelstein-Keshet,
1999; Detrain et al., 1999; Camazine et al., 2001; Hemelrijk, 2002; Couzin and
Krause, 2003). Distributing the team within the environment of the problem
to be solved and introducing these positive feed-backs interactions between the
units allows the amplification of localised information found by one or a few of
the units. Thus thanks to this type of coordination, the team reaction to these
local signals is the solution to the problem. While no individual is aware of all
the possible alternatives, and no individual possess an explicitly programmed
solution, all together they reach an “unconscious” decision. The relevance or the
meaning of the behavioural pattern is not found at the individual level but at
the collective level. We defined this process as functional self-organization (Aron
et al., 1990).

In particular, we will discuss two research challenges: the study of generic
rules governing such systems and the transition from solitary to cooperative
problems solving.



6.2 Brief Presentation of Concepts and Definitions

To avoid the confusion that still surrounds “complex systems” and related fields,
we list below the definitions of the basic concepts we use in our research projects.
Besides complexity science still presents a rich variety of frameworks or ap-
proaches which favours different or subtle variations in the definitions or the
concepts. Of course, in a scientific context, the word “complexity” is not a syn-
onym of “complicated” or large system controlled by too many parameters or
variables.

6.2.1 Emergent Behaviour and Self-organization

By emergent behaviour or self-organisation we mean a collective behaviour that
is not explicitly programmed in each individual but emerge at the level of the
group from the numerous interactions between these individuals that only follow
local rules (no map, no global representation) (Camazine et al., 2001). By “not
explicitly” we mean that the behavioural rules do not refer to the global pattern
that will emerge. Like molecules do not “refer” to oscillations or a pacemaker
when they react and produce a chemical clock. It does not necessarily imply a
large number of individuals but rather a large number of interactions and actions
between the individuals and the environment. In our experimental work, we
found self-organized behavioural patterns performed by small groups of animals
not larger than 10 individuals. Moreover, the understanding of the emergent
pattern must be based on the detailed study of the individual properties AND
their interactions not only between themselves but also with the environment.For
us, the opposition between a so-called reductionism and holism is meaningless.

6.2.2 Randomness: The Essential Ingredient

Individual actions include a level of intrinsic randomness. Like moving randomly
or behaving in a probabilistic way, an action is never certain but has an intrinsic
probability of occurring. The behaviour of each individual becomes then unpre-
dictable. Randomness and fluctuations (also called noise) play an important role
in allowing the system to find optimal solutions. This optimality is largely due
to a balance between the fluctuations leading to innovations and the accuracy
of the communications or behaviours (Deneubourg et al., 1983; Pasteels et al.,
1987; Nicolis et al., 2003).

6.2.3 Predictability

The global outcome of population presenting emergent behaviour is certain in
well characterised systems and in a normal context i.e. in the absence of catas-
trophe like unexpected rapid and dramatic change in the environment. Ants do
bring food home or they simply die! Because often the system presents multi-
ple possible states coexisting for the same conditions, the specific solutions that
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accomplish the global behaviour at the level of the group are statistically pre-
dictable. For instance the optimal solution to solve a problem is chosen in 90% of
the cases while a less optimal solution is selected in 10% of the cases. Neverthe-
less, the problem is solved in 100% of the cases! The discussion is then shifted
towards knowing if 10% of suboptimal behaviour is acceptable and not if the
global outcome is predictable. To a large extend, the unpredictability perceived
in this context often comes from either the lack of knowledge of the system or its
uncontrolled evolvability at lower time scale. If, in an IT context, engineers want
to design systems presenting autonomous collective behaviour they can control
the needed level of predictability.

6.2.4 Evolution and Emergent Behaviour

Emergent behaviour is not an equivalent of evolution or even a necessity for
evolution to take place. Emergent behaviour does not produce, in itself, new
individual behavioural or signals. There is no contradiction or even competition
between self-organisation and natural selection in evolution. On the contrary,
evolution makes use of the properties of emergent behaviour by evolving the
local rules that will produce new behaviours at the level of the population.

The time scales of emergent behaviour and evolution are completely different:
the first takes place in a short time while the latter require a much longer time. In
other words, ants use emergent behaviour, for example to bring food home today,
while evolution is changing these local rules of this specific emergent behaviour
to produce new species of ants (Camazine et al., 2001). For an account on how
artificial evolution can be used to develop embodied andcommunicating Agents
(see chapter 3).

6.3 Self-organisation in Living and Social Systems

Actually, a limited number of simple generic rules are at work in biological sys-
tems (from the cellular level to animal societies) and produce optimal emergent
collective patterns for resources and work allocation, social differentiation, syn-
chronisation or de-synchronisation without external pacemaker, clustering and
sorting. These simple rules become building blocks for higher collective complex-
ity.

What is remarkable is the simplicity and parsimony of these rules that allows
solving a great variety of the problems encountered by populations that cannot
resort only to a centralised organisation. Nevertheless, the implementations of
these rules are a real challenge. In biological systems animals are not simple ma-
chines and the physiology that produce such building block behaviours is highly
sophisticated and a scientific challenge to identify. In artificial systems, even if
the level of animal sophistication is absolutely not necessary, their implementa-
tion of behavioural rules still represents a technological challenge. Below we list
important features of agent populations presenting emergent behaviour:
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– Dynamical systems with a large number of events.

– Descriptions based on models with a limited number of parameters are
possible. Models make use of different tools like differential equations,
cellular or Boolean automata, stochastic simulations, etc.

– The size of the population plays an important role. For the same set of
behavioural rules different collective responses are observed as a function of
the population size (see e.g. Detrain et al., 1991; Beekman et al., 2001). In
living systems, the organisation plan or the behavioural rules may change
as a function of the population size. It implies that in artificial complex
systems, scalability is an issue that has to be included into the design
according to the size of the population.

– The characteristics of communication play an important role. The range
of communication (i.e. all to all, next neighbours, etc.) changes the pat-
tern. Privileged linked between some agents (network of interactions) are
important features. The lifetime of the communication signals is also an
important factor as regards flexibility and/or persistence of the emerging
patterns (Detrain et al., 2001).

– The depletion of the resources suppress resources may play an important
role. Usually the negative feedbacks that are involved in these dynamics
results of the depletion of resources produced by the activity. It can be an
ingredient that helps in finding optimal solutions.

– With local knowledge, these systems are capable of adaptive self-
reconfiguration or of producing a diversity of responses that do not need to
be explicitly coded at the individual level.

– It is not so much the internal structure of the agents but rather the
agent/environment and agent/agent interactions that may produce useful
results. Through the dynamics of the interactions and without modifying
the behavioural algorithms, groups of agents may adopt very different
adaptive responses. This is clearly an important property of embodied
systems that illustrate the synergy between the physics of a problem and
the cognitive capacity of the individuals.

– Randomness is a positive ingredient to find optimal solutions. Randomness
or noise is an intrinsic component of real-world systems. It is modulated in
living systems and should be tuned in artificial systems. In many systems
the randomness is important to find the optimal solutions.

– Biological systems are not fully self-organised complex systems, they
present a mix between centralised and distributed “management”. There
is a balance between treatment of information at the individual and at
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the global level. Specialisation may pre-exist in the systems and affect the
emergent behaviour.

– Well-known experimental and theoretical examples are found in animal so-
cieties which are conceptually close to artificial systems.

6.4 When Do Animal Population Use Emergent
Behaviour or Self-organisation?

Emergent behaviours appear most useful in real populations of individuals that
have to cooperate. Although this point seems obvious, some applications of the
so called “ant algorithms” do not really fall into this category. Indeed, the popu-
lation is just momentarily and artificially created to solve the problem like when
solving an optimisation problem with an “ant algorithm” (Dorigo and Stützle,
2004). The problem is solved a priori and then the solution is implemented in
a centralised manner. Even if this approach is interesting, we think that it is
somehow diverging from the core logic of emergent behaviour. To illustrate this
point, below, we list some of the characteristics of the populations presenting
autonomous organisation.

– Actions and decisions are simultaneous and mixed, actions and decisions are
concomitant.

– Only limited “cognitive” capabilities of agents are needed to collect and
process information.

– Tasks or resources allocation between agents is flexible and autonomous.

– Agents are unpredictable because they need to be stochastic in some
behaviour.

– There is no need for a perfect global knowledge of the system by the agents.

– It is an alternative to predict all the needs of an agent population at anytime.

Emergent behaviour is very useful when the decision has to be taken while
action takes place. In a natural context, in animal populations, these types of
behavioural pattern are only used in real time. It means for example, that there
is no possibility to stop the system, to make an optimisation computation and to
start it again. There is a progressive build-up of the solution and these systems
keep a flexibility to respond to environmental or social changes. When ants are
looking for the best source of food with the shortest path they find the optimal
solution by working out, by walking the computation (in the literal meaning of
the word “walk”!) and not by stopping solving an optimisation problem and
then implementing it. This implies that it takes some time before an optimal
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solution is found, during this time the colony explore and make use of all available
possibilities and can be under-performing.

Moreover, in many situations, populations are influenced by the environment
that becomes a kind of particular agent in the system (Detrain et al., 1999;
Detrain and Deneubourg, 2002). Nevertheless, the properties of the environment
do not need to be encoded explicitly in the individuals neither do the agents
need a global view. In this section, we discuss some mechanisms that produce
adaptability to perform certain task in an autonomous way by a collection of
individuals with fixed rules on the time scale of the task to be performed. There
is still the important question how and why such mechanisms have been selected
by evolution and how they could be further evolved or stabilized. Somehow, we
are dealing with mechanisms that produce adaptability to perform a task at
“short” time scale and for an evolutionary approach (see the contribution by
Floreano and Keller and by Nolfi) are dealing with adaptability at “longer” time
scale by evolving those mechanisms. We define “short time scale” by the time it
takes to the system to actually perform the task and “long” by the time it takes
for the system to perform a large number of time the task.

6.5 The Study of Generic Rules Governing Self-organized
Systems

6.5.1 Introduction

One important research challenge is that to identify the type of IT problems that
can be solved at the collective level by relying on different type of communication
systems. The emphasis of this sub-project is on the basic characteristics of the
communications that are important in an IT context. Using the methods of
complex systems science and computer science, we aim at studying what kind
of performances at the collective level different communication systems make
possible. This study must take account of the parameters characterizing the
situation (e.g. the number of agents), the characteristics of the tasks and also
the information processing at the individual level.

A large number of collective decisions in social species (mainly social insects
and gregarious arthropods, see e.g. Pasteels et al., 1987; T. et al., 1991; Beckers
et al., 1992; Camazine et al., 1999; Millor et al., 1999; Visscher and Camazine,
1999; Saffre et al., 1999; Portha et al., 2002; Sumpter and Pratt, 2003; Jeanson
et al., 2004) are based on the competition (in space and/or time) of behavioural
positive feed-back corresponding to situations where :

i) the individual probability of adopting a behaviour increases with the
number of individuals exhibiting this behaviour;

ii) the individual probability of leaving a behaviour decreases with the number
of individuals exhibiting this behaviour.

53



In these systems, the nature of the positive feedbacks, such as recruitment,
often involve specific behaviours by individuals; in contrast the negative feed-
backs often arise “automatically ” as a result of the limits or constraints in the
system (for example, the depletion of building materials or the exhaustion of
the “resources”, Dussutour et al., 2004). Moreover, the number of parameters
needed to characterize the communications is lower that the number characteriz-
ing the individual capabilities to process information. The repertoire is based on
a set of n different signals (e.g. n different pheromones in the case of the chem-
ical signals). The intensity of the signal perceived by the individual controls
its response. This intensity depends on the emission and physical parameters
affecting its propagation and lifetime. Often, one signal corresponds to one be-
haviour. However, in many cases, different intensities of the same signal may
induce different behaviour such as attraction or fleeing.

6.5.2 Taxonomy of The Structures and Characteristics of The
Communications

Most often, the classification of the social activities is based on the classical
biological functions: feeding, reproduction, anti-predator behaviour,. . . However
this classification occults the existence of generic rules that are involved in many
tasks. A new classification should be proposed to explore the link between the
problem and the characteristics of the interactions needed to solve it. Among
the tasks that must be performed, having their counterpart in IT, clustering and
sorting, the coupling between exploration and exploitation and the synchroniza-
tion are the most important.

Our first challenge is to start building this taxonomy and to find the
characteristics of the communications (range, mean life time, network
vs. broadcasting, level of noise) leading to an efficient problem-solving.

6.5.3 Number of Agents and Randomness

The emergence of a pattern largely depends on many parameters and the rela-
tionships between these parameters such as the coupled number of agents and
intensity of the communication that affects the level of noise. This level may also
depend of individual characteristics.

It is well known that if the intensity of communication is high enough, small
groups are able to self-organize. However, it does not mean that these patterns
are efficient. The study of optimality in such systems needs to take account of the
stochasticity of the phenomenon. An approach accounting for the fluctuations
in the number of foragers as well as in the process of decision has been carried
out in the case where an ant colony has to choose to follow trails leading to food
sources of different quality (Nicolis et al., 2003).

The study shows that the efficiency of the collective decision depends on
the intensity of communication. For a given colony size, it exists an optimal
intensity of the signal, and hence an optimal amplification and an optimal level
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of noise. This optimal amplification is related to the colony size: for a large
colony, many individuals lay small quantities of pheromone, instead of a small
group of individuals laying higher trail amount. At least, the optimal response
of a large colony is always greater that the optimal response of a small colony.

The challenging question is that the results obtained in the specific
biological context of trail recruitment can be generalized to other decision
processes involving different competing options.

For instance, aggregation can be described by similar mathematical models
when individuals of a colony have the choice between different relative attractive
sites to aggregate themselves (Rivault and Cloarec, 1998; Lioni and Deneubourg,
2004; Ame et al., 2004; Jeanson et al., 2004, in press). It can therefore be expected
that since the mechanisms, underlying this phenomenon (and more generally
all phenomena implying competition between positive feed-back) are similar to
recruitment, there exists an optimized value of amplification and interaction
between agents and the same relation exists between the optimal amplification
and the size of the group.

6.5.4 How Many Patterns Only One Signal is Able to Produce?

As we previously mentioned in many cases the individual information process-
ing is characterized by many more parameters that the communication. The
agents are characterized by different variables: active vs inactive, mobile vs im-
mobile, the number of behavioural states and/or internal states. Their individual
response (transition between different behavioural states, the emission of the sig-
nal, etc.) is a function of perception of the signal, the different stimuli from the
environment and their internal states. In this context an important question is
how many patterns may be produced or how many tasks may be performed with
only one signal. This study is in part motivated by the observation that (i) in the
same species the same pheromone or blend of pheromones is involved in many
tasks and (ii) that the same type of signal (e.g. trail pheromone) leads to very
different patterns in different species.

The challenge is to identify the rule of thumb governing the individual
behaviour and the characteristics of the communications to produce the
different structures observed in bio-systems such as collective choice, ex-
ternal memory and multistationnarity, synchronization and the different
spatial patterns (e.g. Turing-like patterns, excitable waves).

Correlatively, it is essential to test the following hypothesis: for a
given task and environment, to keep an efficient collective response, any
simplification of the behavioural algorithms must be compensated by an
increase in the number of different signals exchanged between agents.
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6.5.5 Intelligent Decision Criteria

In many tasks, to produce an efficient response, the agents must integrate many
parameters to modulate their different behaviours. One way for insect societies
to cope with the complexity of their environment is the use of intelligent de-
cision criteria at the individual level (Detrain and Deneubourg, 1997; Mailleux
et al., 2000, 2003; Detrain and Deneubourg, 2002). This concept seems par-
ticularly important not only in a biological situation but also in IT situation.
Intelligent decision criteria do not require the ant to make some complex and
precise assessment of all environmental parameters; instead, they rely on cues
that automatically integrate several variables (inside or outside the nest). Since
potential cues vary in their value as indicators, one might expect that, through
evolution, only very good cues—those with a high, reliable, and functional in-
formative content—have been retained as decision criteria. In other words, the
“intelligence” of a decision criterion results not simply from the use of cues that
intrinsically catch a part of the environmental complexity, but also from the
selection of the best cue—that is, the one most pertinent for the activity of the
ants.

The main challenge is to identify the context and the characteristics
in a task, where a large number of parameters must be integrated by the
individuals that lead to the use of efficient intelligent criteria.

6.5.6 Alternative Scripts

Animal societies offer a complete blend of individual capacities and collective
levels of intelligence and complexity. The self-organized systems, that we review,
are examples of rules of thumb needing a limited cognitive ability and a limited
access to global information to produce social complexity. However, this type of
behavioural rules is not specific to self-organization and is shared with alterna-
tive scripts, such as hierarchical organisation (Hemelrijk, 2002) that are often as-
sumed to involve high individual cognitive capacities and individual recognition.
However, from the point of view of interactions between individuals, hierarchical
scripts may be seen as a self-organization script where the individuals can only
differ by the frequency of emission and/or the response threshold to different
environmental stimuli and the intensity of the communication. These differences
are enough to produce asymmetrical interactions between the individual, this
asymmetry being one characteristic of the hierarchy. In animal societies, hierar-
chy is too often discussed in term of reproductive success and rarely analyzed in
term of problem-solving or decision-making.

Currently, it seems essential to find the conditions where a hierarchy
is more (or less) efficient that a classical self-organized system where all
the individuals may be identical and the interactions between individuals
are symmetrical.
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6.6 Building up Artificial Ecagents

6.6.1 Introduction

The research strategy adopted for this second sub-project is the counterpart of
the main objective of Ecagents.

A second complementary important challenge is that to build in lab-
oratory, artificial groups of natural agents able to cooperate and to per-
form tasks that their “ancestral wild types” in natural conditions are
unable to do.

From an IT point of view, these new societies can be autonomous teams of
sensors able to process information (the animal being equipped with sensors or
being itself the sensor), or factories -fortresses able to solve problems or produce
chemical substances, manage wastes, etc.

These new societies can be generated by three different ways: genetics ma-
nipulations, environmental manipulations and social manipulations affecting the
social ontogenesis or the size of the group. Here we will discuss only how envi-
ronmental and social manipulation will be theoretically studied. Among all the
problems to be solved to synthesize such groups, we will focus on cooperation
based on new communication and the emergence of division of labour.

Among many wrong hypothesises concerning group living organisms, we are
mainly concerned with two. The first one, based on a lack of observation, assumes
that the behavioural algorithms of solitary and social animals performing the
same task are always deeply different. The second one, previously mentioned,
assumes that self-organization only works when a large number of individuals
interact. In fact it is the number of events that is essential and not the number of
individuals. Having in mind, that : (i) there is no fundamental difference between
the behaviour of solitary and social organisms; (ii) that self-organization may be
involved in solitary activity and (iii) it exist a strong behavioural plasticity, we
assume that a diversity of collective structure may be generated without genetic
modification.

6.6.2 Emergence of Cooperation and Division of Labour

Different studies show that some mechanisms used by group living organisms
also govern the behaviour of solitary organisms. Solitary species use amplifica-
tion mechanisms based on the chemical marking of their resting site or trail
orientation. Stigmergy, a stimulus–response mechanism involved in building be-
haviour is not only used by social species but also solitary individuals (see e.g.
for social or solitary spiders: Saffre et al., 1997; Gunderman et al., 1993). The
consequences of such a generic logic could then be one of the keys in under-
standing the transition between different forms of cooperativity, and therefore
different degrees in sociality. In other words, the transition between solitary to
social activities do not always need the selection of new behavioural algorithms.

57



Chemical communications provide a good material to study the synthesis of
emerging cooperation such as the building of a common network or the selection
of a site of clustering.

Every individual may use its own trail or chemical blend to build its foraging
network or mark its shelter. The chemical marking acts as an external memory.
Preliminary theoretical results show that a slight inter-attraction between the
markings of different individuals may induce the formation of a cluster. This
leads to the question of how a solitary species might be manipulated to lead
to clustering. More precisely what must be the characteristics of the marking
and the environment to lead to different patterns of aggregation or the use of a
common network of trails?

In the context of self-organization and transition between different social
organizations, aggregation and its resulting increase in density is a prerequisite
for the emergence of higher forms of cooperation such as social specialization.
This simple dependency of density could lead or be involved in the process of
the social differentiation. The interplay between amplification mechanisms (e.g.,
growth or learning) and the competition in a cluster could be enough to produce
the social differentiation that has been described for very different species (e.g.,
social spiders, Rypstra, 1993, sea-urchins, Grosjean et al., 1996, queens of ants,
Fewell and Page, 1999, for a model see Bonabeau et al., 1998).

Similarly, a specialization of the members of the cluster would be gener-
ated. In social insects, some divisions of labour are the result of self-organized
mechanisms (see e.g. Beshers and Fewell, 2001) leading to a strong correlation
between the colony size and the level of individual specialization: the bigger the
colony, the higher the specialization. To summarize, task allocation and individ-
ual specialization will be shaped by the dynamics of aggregation that itself can
be induced manipulating the environmental characteristics.
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The Characteristics of Human Language

Domenico Parisi

Institute of Cognitive Sciences and Technologies

7.1 Introduction

ECAgents (Embodied Communicating Agents) are artificial entities that have a
body, interact with a physical environment, and communicate with each other
and, possibly, with human beings. ECAgents can either be simulated in a com-
puter or they can be actual physical artefacts. Constructing and analyzing ECA-
gents has two goals. One goal is purely scientific. ECAgents can be created in
order to better understand the communications systems of natural organisms. If
one succeeds in constructing artificial agents that demonstrably communicate in
the same, or similar, way as some particular real animal, it is reasonable to think
that one has reached some understanding of the way in which that particular
animal communicates. The second goal is technological and applied. ECAgents
can generate suggestions on how to construct ECDevices (Embodied Communi-
cating Devices), i.e., physical artefacts that communicate with each other and,
possibly, with their users, and that have some practically useful function. The
two goals are mutually beneficial. Not only ECAgents with purely scientific goals
can suggest new types of ECDevices but designing ECDevices that have prac-
tical applications may suggest new interesting scientific questions and possible
answers to these questions.

The communication system of ECAgents can resemble animal communica-
tion systems or it can also resemble human language. Human language has some
properties and functions in common with animal communication systems but it
also has many properties and functions that make it different from animal com-
munication systems. As always when one compares human beings with other
animals, there is no neat dividing line between humans and other animals and
one can find simpler manifestations of typical human traits in this or that non-
human animal. Furthermore, human language first arose in primates that only
possessed animal communication and an important research question is how the
transition occurred. But human language clearly has a number of properties and
functions that distinguish it from animal communication and, even if this or that
typical feature of human language can be found, at least in some embryonic form,
in animal systems, the simultaneous presence of all the features appears to be
unique to human language (Hauser, 1996). Therefore, one can construct ECA-
gents that possess animal-like communication systems or one can concentrate
on those properties and functions that typically characterize human language.
ECDevices, of course, can possess mixed communication systems, with proper-
ties and function of both animal communication systems and human language,
if this turns out to be useful for practical applications.



Which properties and functions characterize human language and distinguish
human language from animal communication systems? The following is a possible
list (cf. also Hockett, 1960a). Human language:

1. has syntax and, more generally, has signals which are made up of smaller
signals

2. is culturally transmitted and culturally evolved
3. is used to communicate with oneself and not only with others
4. is particularly sophisticated for communicating information about the exter-

nal environment
5. uses displaced signals
6. is intentional
7. is the product of a complex nervous system
8. influences human cognition.

Let us briefly comment on these eight characteristics of human language.

7.1.1 Human language has syntax and, more generally, uses signals
which are made up of smaller signals

Animal signals tend to be simple, i.e., they are not made of smaller signals that
have meaning. Although some signals of birds and nonhuman primates may be
analysed as combinations of recurring parts, the parts do not appear to have
separate meaning. Linguistic signals are complex. They are made up of smaller
signals that have their own separate meaning, and it is the particular way in
which the smaller signals are combined in a larger signal that determines the
meaning of the overall signal. This combinatorial or compositional character
of human signals manifests itself at a hierarchy of levels: phonemes (that do
not have separate meaning) are composed into morphemes, morphemes into
words, words into phrases, phrases into sentences, sentences into discourses and
dialogues.

7.1.2 Human language is culturally transmitted and culturally
evolved

Animal communication systems are genetically transmitted and they are the
result of a long process of biological evolution. Human language is culturally
transmitted, i.e., learned from others. Human infants acquire language by inter-
acting with other people who already possess the language, although language
learning clearly is based on species-specific genetic predispositions. Historical
languages, such as English or Italian, arise through a process of selective cul-
tural transmission of linguistic signals and the constant addition of new variants.
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7.1.3 Human language is used to communicate with oneself and not
only with others

Animals only use their communication systems socially, i.e., they exchange sig-
nals to communicate information from one individual to another individual. Hu-
mans use language both to communicate with other individuals and to com-
municate with themselves. This intra-individual use of language underlies much
of what is called mental life, i.e., thinking, remembering, reasoning, predicting,
planning, deciding, etc.

7.1.4 Human language is particularly sophisticated for
communicating information about the external environment

Most animal signals communicate information about the sender (I am here; I am
angry) and not about the external environment, whereas human language may
communicate information about both the sender (I am angry) and the external
environment (the book is on the table), and is particularly sophisticated for
communicating information about the external environment.

7.1.5 Human language uses displaced signals

Animal signals tend to be deictic, that is, they communicate information which is
only true given the current state of the sender and the receiver of the signal and
their current location in space. Human language can communicate information
about other places and about past and future states of the sender (I was angry,
I will be angry) or of the environment (the book was on the table, the book will
be on the table).

7.1.6 Human language is intentional

Most animal communication is unintentional or expressive. Animal signals are
emitted without thinking or deciding to emit them. They tend to be direct
mappings from the current state of the sender or of the external environment
to the production of the signal. Human language is intentional. The mapping
from meaning to signal in the nervous system of the sender is more indirect and
complex. This may be related to the fact that, unlike animal signals, linguistic
signals even when they are addressed to another individual tend to also be signals
for the sender (see (3) above).

7.1.7 Human language is the product of a complex nervous system

Human beings have a more complex nervous system than other animals and this
property of their nervous system can be both a necessary pre-condition and a
consequence of a more complex communication system such as human language.
Animal communication systems can be produced by simple nervous systems that
directly map input into output (Figure 1). Human language requires a more
complex nervous system with distinct modules, separate pathways, recurrent
circuits.
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Fig. 1. Purely reactive network

7.1.8 Human language influences human cognition

The communication systems of nonhuman animals appear to be juxtaposed to
their cognitive abilities and not to have any particular influence on these abilities.
In contrast, human language seems to have an influence on the cognitive abilities
of its users, for example on how human beings categorize the world, how they
analyze the world, how they remember past experiences and prepare to future
ones.

The goal of the present chapter is to explore how the ECAgents approach
can be applied to the study of these eight characteristics of human language.
As we have already said, we do not claim that animal communication systems
entirely lack these characteristics. Human language has emerged in populations
of organisms that originally lacked human language but possessed animal-like
communication. Therefore, there can be no clearcut separation and difference
between animal communication and human language. Furthermore, the aim of
the ECAgents approach is not simply to conceptually identify and describe these
eight characteristics but to actually construct artificial agents that display the
eight characteristics. Since constructing ECAgents is not to design them but to
let them evolve or learn whatever communication abilities they will eventually
exhibit, one might start with simpler systems that lack human language and see
how communication systems that have some of the properties of human language
can gradually emerge.

7.2 ECAgents approaches to the eight characteristics of
human language

In this section we sketch some research directions in an ECAgents approach to
human language and we briefly mention some work which has already been done.
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7.2.1 Human language has syntax and, more generally, has signals
that are made up of smaller signals

Suppose you want to be able to communicate the following 8 facts:

1. The book is on the table
2. The pen on the table
3. The book is under the table
4. The pen is under the table
5. The book is on the chair
6. The pen is on the chair
7. The book is under the chair
8. The pen is under the chair

If your communication system is made of simple signals, you would need 8
different signals, one for each of the 8 different facts. If on the other hand you have
human language 6 signals would be sufficient (book, pen, on, under, table, chair)
and you would be able to communicate the 8 facts by combining together three
simple signals (words) to form one complex signal (sentence). The compositional
way to communication is very powerful. By adding one single simple signal, e.g.,
glass, you would be able to generate four more complex signals (the glass is on
the table, the glass is under the table, the glass is on the chair, the glass is under
the chair). With longer and longer complex signals, adding a limited number of
further simple signals would allow you to generate an increasing and very large
number of complex signals.

One critical challenge for ECAgents research is to be able to costruct ECA-
gents that start with an animal-like communication system with only simple,
noncompositional signals and gradually develop a human-like communication
system with complex, compositional signals. Once a communication system with
complex signals exists, it has to be learned by new members of the community
(children). Language is learned by noticing the systematic co-variation of spe-
cific signals with specific aspects of ones experience and incorporating these
co-variations in ones nervous system (Chapter 10). If a learning agent is exposed
to complex signals the agent has to notice the co-variation of specific sub-parts
of a complex signal with specific sub-components of its current experience and to
incorporate these partial co-variations in its nervous system, not the co-variation
of the entire complex signal with the entire experience.

Human language is compositional all the way, from phonemes to morphemes
to words, phrases, and sentences. But the critical aspect of human languages
compositionality that we should be able to incorporate in ECAgents is syntax,
which is the combining of words into phrases and phrases into sentences. In
a sentence the meanings of the words are combined together to generate the
meaning of the sentence. Since there may be many different ways to combine
together the meaning of a set of words into the meaning of a sentence, a sentence
provides a number of cues for combining together the meanings of the words
in the way which is intended by the speaker. These cues are called grammar.
Grammatical cues can consist in the order in which the words follow each other
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Fig. 2. Genetic transmission

in the sentence or in special signals which may be attached to words (bound
morphemes) or free-standing (function words). (We return to compositionality
in (6) below.)

7.2.2 Human language is culturally transmitted and culturally
evolved

All communication systems are transmitted from one individual to another in-
dividual, either genetically (Figure 2) or culturally (Figure 3). Communication
systems that are genetically inherited and evolve biologically, i.e., animal com-
munication systems, are transmitted from parents to offspring. Communication
systems which like human language are culturally inherited (learned from others)
may be transmitted in a variety of manners. They are mostly inherited from par-
ents (vertical cultural transmission; cf. Cavalli-Sforza and Feldman, 1981) and
from other members of the preceding generation (oblique cultural transmission)
but they are also learned from other members of the learners own generation
(horizontal cultural transmission) and, in fact, from any individul with which
the learner enters into contact and interacts. While biological transmission is
entirely one-way, i.e., from parents to offspring, the cultural transmission of
language is mostly one-way when the child first acquires the language but it
becomes two-way in all the encounters that one individual has with other in-
dividuals during its life. Biologically inherited communication systems (animal
communication systems) are transmitted at one single time, i.e., at birth, al-
though the genotype can translate into the phenotype as a result of a temporal
process of development. In contrast, human language is learned and modified
during the entire course of an individuals life and is the result of the particular
social network of interactions which exists in a collectivity of individuals. If a
collection of individuals with a shared language divides up into two separate
collections with no interacting links between the two new collections, different
languages will tend to emerge in the two collections (Chapter 12).

Biologically and culturally transmitted systems also differ in the manner in
which they change. Biological evolutionary change is mostly the result of random
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Fig. 3. Cultural transmission

mutations and the creation of new genotypes that are new combinations of parts
of the genotype of one individual (mother) with parts of the genotype of another
individual (father) - for sexually reproducing organisms. Cultural evolutionary
change is the result of a more complicated set of factors. When an individual
learns to speak in the same way as the individuals with which the individual
interacts, there may occur random transmission errors that resemble random
genetic mutations, but also the creation of new ways of speaking that combine
aspects of the language of a large number of other individuals (not just two,
mother and father, as in sexual recombination), in fact, as we have noted, of all
the individuals with which the individual interacts.

Furthermore, the mechanism of selective reproduction is simpler in biologi-
cal reproduction. Only the genotypes of the individuals that have offspring are
found in the next generation. In selective cultural (linguistic) reproduction there
may be a number of different factors that determine which individuals transmit
their language to other individuals. Boyd and Richerson (1985) mention direct
bias (the cultural/linguistic trait is seen as leading to success), indirect bias (the
cultural/linguistic trait does not lead per se to success but is associated with
traits that lead to success), prestige bias (the trait confers prestige to its posses-
sor), frequency bias (the traits exhibited by a larger number of individuals tend
to be copied more that those exhibited by a smaller number of individuals), and
its contrary, minority bias (preferred traits are those exhibited by a minority of
individuals).

Finally, unlike animal communication systems, human language, as all cul-
turally transmitted traits, may change because of the intentional creation of new
words and new ways of speaking.

If a communication system is genetically transmitted and evolved it is in-
evitable to ask whether it benefits the sender or the receiver of signals or both.
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Fig. 4. Language for communication with others

Since human language is culturally rather than genetically transmitted these
problems arise in a different manner in the case of language. Language appears
to be learned because of a general, genetically inherited tendency to learn from
others (Herbert Simons docility), which develops biologically because it is mostly,
even if not always, beneficial for the individual. However, problems of who ben-
efits from language arise not in the context of language transmission but in the
context of language use. What are the advantages for the sender of saying one
particular thing? What are the advantages for the receiver of behaving appro-
priately in response to what has been said?

7.2.3 Human language is used to communicate with oneself and not
only with others

Animals use signals to communicate with other animals, mostly conspecifics but
also members of other species. Human language is used to communicate with
other individuals (conspecifics) (Figure 4) but it is also used to communicate
with oneself. One individual generates a signal but this signal is not produced
to communicate information to another individual but is produced to communi-
cate information to oneself (private speech; Figure 5). In many cases the signal,
typically, a sound, is not even externally emitted but it is only internally gener-
ated, so that other individuals cannot perceive the signal (inner speech; Figure
parisi6).

An important objective of research on ECAgents is to construct artificial
organisms that produce signals for themselves (Chapter 10). Humans produce
signals both for other individuals and for themselves, and they appear to use
mostly the same signals both for others and for themselves. (But according to
Vygotsky, inner speech is somewhat different from external speech. Cf. Vygot-
sky, 1986) However, it is an open question whether it might exist real organisms
- or whether it would be possible to construct ECAgents - that have a com-
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Fig. 5. Private speech

munication system which is only used to communicate with oneself, and not
for communicating with other individuals (cf. Wittgensteins private language
argument).

But, of course, the most interesting research question is what the function(s)
of producing signals for oneself might be. A simple function might be a mem-
ory function. Information which arrives to the input units of an agents neural
network might be better stored for future use if the information is mapped into
linguistic signals and it is the linguistic signals that are retained in the neural
networks memory rather than the raw information itself. Linguistic signals may
occupy less space in memory than the raw information to which they refer or, if
the preservation of information in memory requires recycling of the information,
the recycling can be easier and more efficient if it is signals that are recycled,
that is, repeated to oneself, instead of the raw information itself.

Storing information in the form of linguistic signals may take place in two
different conditions. In one condition, one individual perceives some raw in-
formation as input and it produces a signal that describes the information as
output. The signal is received by another individual, which stores the linguistic
signal and, when it has to use the information, it maps back the signal into the
information. In another situation, the individual is all alone, it perceives some
information in the environment which it would be useful to keep in its memory,
and the individual produces a signal and stores in its memory the signal rather
than the information itself (Mirolli and Parisi, submitted).

Other adaptive uses of producing signals for oneself could be to linguistically
articulate ones experience if this leads to better performance, to linguistically
label ones predictions on the future if this makes it possible to generate chains of
linguistically labeled predictions extending further into the future, to allow rea-
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Fig. 6. Inner speech

soning as the deduction of linguistically described facts from other linguistically
described facts.

7.2.4 Human language is particularly sophisticated for
communicating information about the external environment

Animal signals mostly communicate information about the sender of the signal,
its current location, its species, sexual, or individual identity, its current emo-
tional state, its intentions and attitudes, etc (Hauser, 1996). There are exceptions
such pheronome signals, food calls, alarm calls, but these signals communicate
very restricted information about the external environment. In contrast, human
language is very sophisticated for communicating information about the exter-
nal environment and, more specifically, spatial information: where things are,
how they can be reached with the hands or legs, what their spatial relations are,
etc. One can even advance the hypothesis that the advantages of possessing a
communication system so useful for communicating information about the ex-
ternal environment have been an important pressure for its biological/cultural
emergence. In any case, language has a rich repertoire of signals for identifying
objects and landmarks in the environment and for describing spatial relation-
ships between objects and landmarks. These signals appear to be critical for
ECAgents that tend to displace themselves, or be displaced by humans, in the
environment, and that have to communicate to each other where things are in
the environment and how they can be reached.

7.2.5 Human language uses displaced signals

Imagine an agent that discovers where some entity, say, a prey, is located in the
environment and it wants to communicate this information to other individuals
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so that the other individuals can also find the prey. One way of doing this is to
remain near to the prey and to emit a signal, say a loud sound, which can be
received by the other individuals. The other individuals respond to the received
signal by approaching the source of the signal, that is, the sender, and, therefore,
the prey itself. This solution, however, has many limitations. One limitation is
that the sender has to produce the signal while remaining near to the prey.
The signal is useless if the sender moves away and then it produces the signal.
Another limitation is that the other individuals must be close enough so that
they can receive the signal, i.e., hear the sound. A third limitation is that hearing
the signal may induce the prey to fly away.

A different solution is to produce a signal which co-varies with the location in
which the prey has been discovered, where the location of the prey is identified
with respect to some landmark. Imagine that the prey can be found either near
to a river or near to a hill. The discoverer of the prey produces one signal when
it finds the prey near to the river and a different signal when it finds the prey
near to the hill. The other individuals respond to the first signal by going to the
river and they respond to the second signal by going to the hill. This system
of communicating information about the location of the prey has none of the
limitations of the previous system. The sender of the signal can produce the
signal whatever its current location in space. It can produce the signal in any
place and at any time. The receivers of the signal must be near to the sender of
the signal when the signal is emitted in order to be able to hear the signal but this
may happen separately for each individual receiver of the signal. Furthermore,
one receiver of the signal can communicate the signal to another individual, and
so on in a chain, with no need that all the individuals be together at any given
time and place. Finally, since the discoverer of the prey can produce the signal
after it has moved away from the prey, the signal can be produced with no risk
that the prey hears the signal and flies away (Caretti, Baldassarre, and Parisi,
in preparation).

Signals whose meaning or function is independent of the current location
of the sender of the signal and of the time in which they are produced, can
be called displaced signals (Hockett, 1960b). Emitting a loud sound when one
discovers the prey is to produce a non-displaced signal. Emitting a signal that
co-varies with the location in which the prey has been discovered, is to produce
a displaced signal. Animals signals tend to be non-displaced. Linguistic signals,
except so called deictic signals (e.g., this, that, I, you, here, there, etc.), are
displaced signals.

One interesting contrast between displaced vs deictic signals concerns point-
ing. Pointing, with the gaze or with a finger, is one way of communicating where
things are. Notwithstanding its limitations as a deictic signal, pointing has ad-
vantages in comparison with the use of explicit linguistic signals, and one inter-
esting research direction is to create ECAgents that can use pointing gestures
(Chapter 10). Although it is deictic and can only be used for communicating the
location of objects which are present in the space currently directly accessible
to the senses of both the sender and the receivers of the pointing signal, point-
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ing is not generally found in animals. This seems to indicate that pointing is a
complex cognitive/communicative ability and this complexity extends to deictic
linguistic signals such as this, that, here, there, to the left of, etc.

7.2.6 Human language is intentional

While the production of signals in animals is spontaneous, inevitable, and me-
chanic, linguistic communication tends to be intentional and subject to the judg-
ment of the speaker. (Partial and limited exceptions can be strategic commu-
nicative episodes in nonhuman primates in which the sender may try to deceive
the receiver and it appears to calculate the effects of its signals.)

The characterization and implementation in artificial agents of this sixth
difference between animal communication and human linguistic communication
poses special problems because the distinction between intentional and uninten-
tional communication is difficult to capture in operational terms. Here are some
possible ways of proceeding.

Intentional communication, and intentional behavior more generally, appears
to be linked to the tendency/ability to predict the consequences of ones own
actions. A purely reactive agent is an agent that receives some input from the
external environment or from inside its own body and responds by producing
some movement that changes either the physical relation of the agents body to
the external environment (e.g., the agent displaces itself in the environment)
or the external environment itself (the agent manipulates the environment).
The neural network that underlies the behavior of a purely reactive agent may
have a purely a feed-forward architecture: from sensory input to motor output.
But consider a network architecture which includes a set of units encoding a
prediction of the next sensory input. Given the current input which is encoded
as some specific pattern of activation in the networks sensory units, the network
is able to generate a pattern of activation in one subset of its internal units
(prediction units) that matches the pattern of activation that will be observed in
the sensory units at some future time. This pattern of activation is a prediction.

There are two types of predictions. An agent can generate a prediction of the
next sensory input when the next sensory input is independent of the agents own
behavior, e.g., predicting the weather. Or the agent can generate a prediction
of the next sensory input when this input depends both on the current input
and on the physical action with which the agent responds to the current input:
moving ones eyes, arms or legs. These are the predictions that interest us here
(Figure 7). To be able to predict the consequences of its own actions, the agent
must be able to encode its motor response to the current sensory input as a
pattern of activation in the motor output units but must generate a prediction
of what its sensory consequences will be before the motor response is physically
executed. If the prediction is generated after the motor response has been physi-
cally executed, there would be no need to predict the next sensory input because
the executed motor response will actually produce its consequences and the next
sensory input will be actually observed.
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It has been shown that agents whose behavior is controlled by a neural net-
work can learn to predict the consequences of their own behavior (Parisi et al.,
1990; Nolfi et al., 1994). For example, an agent that displaces itself in the en-
vironment and tries to approach randomly distributed food elements can learn
to predict how the position of food relative to itself changes as a function of its
displacement movements. Or an agent that moves its arm to reach for an object,
can predict how the proprioceptive input from its arm changes as a function of
the movement of the arm. In these cases, the agent generates a prediction of the
next sensory input (new position of food relative to the agent; new position of
the arm) on the basis of the current input from food or arm and the planned
movement with which the agent will respond to the current input. After the
prediction has been generated, the planned movement is physically executed,
the sensory input changes, and one can show that the predicted sensory input
matches the actually observed input.

Why might be adaptive to develop an ability to predict the next sensory input
that will result from ones own movements? In the simulations we have mentioned
the predictions are not used by the neural network itself. This notwithstanding,
it can be shown that learning to predict the consequences of ones own actions
may cause changes in the neural networks connections weights which lead to an
improved performance of the sensory-motor task. Agents that learn to predict
the consequences of the displacements of their body or of their arm movements
are better able to reach food with the entire body or objects with their arms
than agents that do not learn to make these predictions.

However, the predictions about the consequences of ones own actions that
are generated by a neural network can be used by the neural network itself if
the internal units encoding the predictions are not dead ends but they feed back
connections to the rest of the network (Figure 7). Using the predicted information
the network can decide whether to physically execute a planned action or block
the execution of the action, or it can decide which action to execute, action A
or action B. For example, a network that can predict whether a stone of a given
weight which is launched with a given force will actually reach a prey situated at
a certain distance, can actually launch the stone with that force if the prediction
is positive and refrain from doing so if the prediction is negative (Tria and Parisi,
in preparation).

Let us return to communicative signals. Imagine an agent that is ready to
respond to some input with the production of a signal. Consider two possibilities.
In one case the agent is a purely reactive agent. The agent receives an input
from the external environment (or from inside its own body) and it responds by
producing a signal which is received by another agent. In the other case, the agent
is not purely reactive. The agent responds to the input by formulating a signal in
its signal producing output units but is able to delay the physical production of
the signal until the agents neural network has generated a prediction concerning
the consequences that the signal will cause in the receiver of the signal. If this
prediction feeds back into the agents neural network because the prediction
units send connections to the rest of the neural network, the agent can decide
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Fig. 7. Predicting neural network

whether to physically producing the planned signal or to refrain from doing so.
In these circumstances we might begin to say that the sender has an intentional
communicative behavior.

7.2.7 Human language is the product of a complex nervous system

Human beings have a more complex nervous system and a more complex com-
munication system than other animals, especially insects. The two things clearly
are related. Human language has only been possible given the complex nervous
system possessed by humans and, at the same time, it is possibile that the de-
velopment of a complex communication system such as language has been one
of the evolutionary pressures for the emergence of a complex nervous system.

While constructing ECAgents with a simple, insect-like, communication sys-
tems may not require that any special attention be devoted to the architecture
of the neural network controlling the ECAgents behavior, ECAgents with a
human-like communication system should be endowed with a more complex and
explicitly designed neural architecture.

Children from birth to 1 year do not have language. During their first year
they develop from a sensory-motor point of view, acquiring various perceptual
and manipulatory abilities such as looking at things and reaching and manip-
ulating objects, and at the same time they acquire various acoustic/phono-
articulatory abilities, such as repeating ones own sounds, babbling and, at least
from 6 months to 1 year, incorporating in the sounds they produce some of the
specific properties of the sounds of the particular language spoken in their en-
vironment. For ECAgents this implies that the connection weights linking input
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Fig. 8. Neural network underlying human language

to output inside the agents neural network are gradually modified so that an
input causes the appropriate output. However, the two developments appear to
be separated. It is as if the nervous system of the child before 1 year of age con-
sisted of two separated sub-networks, a sensory-motor network with visual and
tactile input and movement output (eyes, face, arms, hands, legs) and a sound
network with sound input and sound (phono-articulatory) output.

At around 1 year the two sub-networks become functionally (and perhaps
even anatomically) linked (Figure 8). The child begins to acquire language. The
weights of the connections linking units in one network with units in the other
network progressively change their value so that an input in one network causes
an appropriate output in the other network, and vice versa. Language compre-
hension is to be able to generate the appropriate output in the sensory-motor
network given some particular input in the sound network (Figure 9). Language
production is to be able to generate the appropriate output in the sound network
given some particular input in the sensory-motor network (Figure 10).

A neural network with an architecture made up of two initially separated and
then interconnected sub-networks is more complex than a simple input/output
reactive, insect-like, network. Consider that, to make both language comprehen-
sion and language production possible, there must be connections linking the
two sub-networks both ways. There are connections from the sound network to
the sensory-motor network (language comprehension) and connections from the
sensory network to the sound network (language production). But given these re-
ciprocal connections, other functions involving language are possible. For exam-
ple, the agent can receive some non-linguistic input in its sensory-motor network,
this input elicits an activation pattern in the internal units of the sensory-motor
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Fig. 9. Language comprehension

network, this activation pattern elicits in turn an activation pattern in the in-
ternal units of the sound network (via the connections from sensory-motor to
sound network), and this activation pattern returns to the sensory-motor net-
work (via the connections from sound to sensory-motor network). This implies
that how the world is perceived and reacted to by the ECAgent is influenced
by how the ECAgent linguistically labels and describes the world (Mirolli and
Parisi, in press). The ECAgent lives in a linguistically commented world. Acting
and thinking (talking to oneself) become intermingled.

Another dimension of architectural and functional complexity of the neural
network of an ECAgent endowed with a human-like communication system de-
rives from the multi-level compositionality of human language. Linguistic signals
are made up of a succession of linguistic units: phonemes, morphemes, words,
phrases, and sentences. How is this reflected in the structure and way of func-
tioning of the ECAgents neural network?

Let us return to the sound sub-network, i.e., the sub-network which takes
heard sounds as input and produces sounds via phono-articulatory movements
as output. One can hypothesize that this network is made up of a succession
of internal layers, one for each level of linguistic units (Figure 11). There is
an internal layer for phonemes, just above the acoustic input units, followed
by a layer for morphemes, then by one layer for words, one for phrases, and
finally one for sentences. Each internal layer has an associated layer of memory
units (Elman memory units) in which the activation pattern appearing in the
corresponding internal units is copied at each cycle. These units function as a
cumulative memory. For instance, given the word cats, first the sound /k/ is
heard, it elicits an activation pattern in the phoneme internal layer, and this
pattern is stored in the associated memory units. Then the sound /a/ is heard,
this sound elicits an activation pattern in the phoneme internal units, and this
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Fig. 10. Language production

pattern is also stored in the memory units together with the preceding pattern
derived from the sound /k/. The same for the third sound of the word cat,
i.e., the sound /t/. At this point the morpheme cat has been recognized, which
means that the information which has accumulated in the memory units of the
phoneme layer evokes an activation pattern in the next layer of internal units,
the morpheme layer. This pattern is stored in the memory units associated with
the morpheme layer. When the sound /s/ of cats is also processed, this sound
is recognized as a new morpheme, its activation pattern is stored together with
the activation pattern of the morpheme cat, and the two morphemes generate
the word cats at the next higher level, the word layer of internal units.

How is a linguistic unit recognized? Aside from phonemes, which have no
meaning, linguistic units, from morphemes to sentences, are recognized because
of the connections linking the sound network to the sensory-motor network.
A linguistic unit is recognized because an activation pattern in the sound net-
work elicits an activation pattern in the sensory-motor network. The sequence of
phonemes /k/ /a/ /t/ is recognized as the morpheme cat because the activation
pattern elicited by the sequence of phonemes in the sound network elicit one
specific activation pattern in the sensory-motor network (the meaning of cat).
Notice that morphemes and words are different from phrases and sentences,
though. Morphemes and words find their meanings already there in the sensory-
motor network. Phrases and sentences obtain their meanings through a process
of syntactic construction that can be characterized using formal rules (Chapter
10).
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Fig. 11. Signals made of smaller signals

7.2.8 Human language influences human cognition

A final crucial difference between human language and animal communication
systems is that animal communication systems do not appear to have any influ-
ence on how animals behave or think when they are not communicating whereas
human language seems to lead to a rather global restructuring of the entire be-
havior and cognition of humans. The influence of language on human cognition
is so deep and widespread that one can reasonably propose the hypothesis that
language has emerged in humans not only because it is a very articulated and
flexible social communication system but because it results in a much more ar-
ticulated and powerful way of knowing and dealing with reality in the individual.
The implication for ECAgents is that constructing ECAgents with human-like
systems of communication will shape the entire behavior of ECAgents, not only
the manner in which they communicate.

The influence of language on human behavior and cognition is to be linked to
the fact that language is used by humans to talk to oneself and not only to com-
municate with others (see (3) above), and to the role that language plays in the
mental life of humans, i.e., in their rememberings, thoughts, predictions, plans,
etc. Humans live in a commented world, that is, in a world which is constantly
linguistically labelled and described by them. They react to this commented
world, not to the world as it is. However, the influence of language on human
cognition may go beyond that. Language may influence cognition in humans
even when humans are not speaking either to others or to themselves (thinking).
The distinction can be captured by referring to the network architecture used in
the preceding section to address language learning in the child. When an input
is received by the sensory-motor sub-network and the input causes an activation
pattern in the internal units of the sensory-motor network, two different things
can happen. First, the activation pattern in the sensory-motor sub-network elic-
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its an activation pattern in the internal units of the sound sub-network which
in turn influences the activation pattern in the sensory-motor sub-network. In
this way the agent is talking to itself and language can have an influence on the
agents cognition. But it can also be that language has left a permanent trace
in the sensory-motor sub-network itself, so that when an input arrives to the
input units of the sensory-motor network, the way in which this input is inter-
nally elaborated (that is, the activation pattern it elicits in the sensory-motor
sub-networks internal units) is influenced by language with no need to activate
the sound sub-network.

How language can influence cognition in ECAgents and what are the conse-
quences of having language for the behavior of ECAgents are very interesting
research topics. Here are some examples of research directions that can be ex-
plored.

Categories in neural networks can be thought of as clouds of points in the
abstract hyperspace that corresponds to a given layer of network units. The
hyperspace has as many dimensions as are the units in the layer. One point
in the hyperspace corresponds to one activation pattern that can be observed
in the layers units. Each point belonging to the cloud is the activation pattern
which appears in the layer of units when the agent experiences one instance of
the category. Adopting an action-based view of cognition (Di Ferdinando and
Parisi, 2004, in press), different experiences as put together to form a single
category if the agent has to respond with the same action to all instances of the
category. Learning is largely to adjust the networks connection weights so that
these weights generate good clouds, that is, clouds that are as small as possible
and as distant as possible from other clouds, i.e., from other categories that
must be responded to with different actions. One role that language can have in
cognition is that language can help the agent to have better clouds, i.e., clouds
that are smaller and more distant from each other than the clouds of agents that
do not have language.

Another influence that language can have on cognition is that language can
allow the agent to articulate the way in which it perceives reality in ways which
are suggested by language, for example isolating perceived objects that corre-
spond to single words and separating different aspects of objects as these different
aspects are separately articulated in a phrase or sentence, e.g., noun + adjective
(Chapter 10).

A more general influence of language on cognition is the languages role in
enlarging the agents temporal perspective on reality. Nonlinguistic agents can
have both memory and prediction abilities that allow them to know and take
into consideration in their behavior, at least to some limited extent, both the
past and the future. However, it is clear that to maintain the past in the form
of words that refer to past experiences and to articulate and to make explicit
ones predictions about the future by putting these predictions in words, may
greatly enlarge an agents temporal perspective on reality, amplify and articulate
its overall knowledge of reality, and augment the effectiveness of its behavior.
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Prerequisites related to Joint Attention

Frédéric Kaplan and Verena V. Hafner

Sony Computer Science Laboratory Paris

8.1 Introduction

Joint attention has recently received an increasing interest in the developmental
robotics community. It became clearer that many of the difficulties encountered
in human-robot interaction and communication between autonomous robots
could be traced back to unsolved issues related to joint attention. Research
in developmental psychology clearly states that skills for joint attention play
a pivotal role for imitation, social cognition and the development of language.
Building models for understanding the development of joint attention is cer-
tainly a crucial milestone on the road towards robots capable of some sort of
social learning.

Despite an increasing number of works dealing with joint attention, existing
computational and robotic models do not seem to agree on the central issues
to be solved. For instance, in a recent paper, Nagai and colleagues describe “a
constructive model that enables a robot to acquire the ability of joint attention”
without a controlled environment nor external task evaluation (Nagai et al.,
2003). Although this paper definitively makes an interesting contribution for
understanding how a robot could learn to interpret human gaze in order to spot
salient objects in its environment, it could be argued that it does not cover
all the aspects of joint attention. Indeed, another model presented by Ikegami
and Iizuka considers that the development of joint attention is closely related to
the emergence of turn-taking behaviours, a rather different issue (Ikegami and
Iizuka, 2003). The heterogeneity of these approaches gives a puzzling picture of
this clearly important but ill-defined process.

We discuss in this chapter the concept of joint attention and the different
skills underlying its development. In the line of Tomasello’s views (Tomasello,
1995; Tomasello et al., 2004), we argue that joint attention implies viewing the
behaviour of other agents as intentionally-driven. In that sense, joint attention
is much more than gaze following or simultaneous looking. Summarising results
from developmental psychology, the chapter presents a timeline showing at what
age the different prerequisites for joint attention arise during the first two years
in the life of a child. In relation with this developmental timeline, the chapter
reviews the current state-of-the-art in robotic and computational models of joint
attention and identifies which issues remain to be addressed.



8.2 What is Joint Attention?

8.2.1 Defining attention

Before discussing what joint attention is, the first step is to agree on a non-
controversial definition of attention. Attention can be defined as the process
whereby an agent concentrates on some features of the environment to the (rel-
ative) exclusion of others. This process can occur in two situations.

1. Passive attention: a salient event happens (e.g. loud noise) and automat-
ically triggers the attention of the agent.

2. Active attention: the agent is involved in an intentionally directed process
(e.g. climbing a mountain) and must actively select particular features of its
environment.

The attentional behaviour is the externally perceivable behaviour that goes
along with the attention process. To reach joint attention, agents must actively
track and manipulate the attention of each other. Discussing the prerequisites
of this coordination is the aim of this chapter. But before that, we must specify
what we mean by joint attention.

8.2.2 Defining joint attention

Joint attention is not simultaneous looking Joint attention is often associated
with a situation where two agents are looking at the same thing. We will now
examine four cases of simultaneous looking which do not qualify for joint atten-
tion. For better illustration, we use examples of interaction between two robots
(Figure 1).

Fig. 1. Two Sony AIBO robots are looking simultaneously at a coffee cup. Is
this already joint attention?
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Case 1a: Simultaneous looking triggered by a salient event (passive attention).
The two robots are sitting in a room. Suddenly, one of their toys makes a squeak-
ing noise. They both turn and look at it immediately.

Case 1b: Simultaneous looking triggered by a “pop-out” effect (passive attention).
The robots found a box filled with balls. All the balls are blue, apart from one
which is pink. Both robots are attracted by the pink ball.

Case 2: Coincidental simultaneous looking. The robots are looking for a toy to
play with. At the same moment, they both see a pink ball on the floor. They
pay attention to it without noticing each other. Each other’s attention is not
monitored.

Case 3: Gaze following. One robot is looking at a new toy. The other less ex-
perienced robot follows his gaze since it has learned that by doing that, it will
often see something interesting. But attention is not joint, as the first robot is
not paying attention to the behaviour of the other one.

Case 4: Coordinated gaze on an object. Both robots are looking at a toy bunny,
and are also aware that the other one is looking, too. From an outside observer’s
point of view, this situation looks like joint attention. However, one robot is
attending to the bunny in order to play with it, the other one is purely attracted
by its colour. They are therefore not attending to the same aspect of the object.

These different cases of simultaneous looking are summarised in table 1. For
an outside observer, these cases might still seem like examples of joint attention
when taken out of context, however they are not.

Joint attention as a shared intentional relation to the world Joint attention is
an active bilateral process which involves attention alternation, but it can only
be fully understood if we assume that it is realized by intentional agents. Active
attention occurs when an agent is involved in an intentionally directed process.
This means that the agent tries to achieve a particular desirable situation that
constitutes its aim or goal (e.g. being on top of a mountain, reducing hunger,
following someone, learning something). The intention is the plan of action that
the agent chooses for realizing this particular goal. This plan includes both the
means and the pursued goal (Tomasello et al., 2004).

To realize its aim, the agent focuses selectively on relevant perceptual fea-
tures. In that sense, attention is intentionally directed perception (Tomasello,
1995). Its intentional behaviour is also associated with particular emotional re-
sponses corresponding to progress, successes and failures in the pursuit of the
goal. The only way for an agent to read the intention of another agent is by
watching its behaviour. Here are a few examples:

82



Example 1: Intention detection through general behaviour. One robot sees an-
other robot walking towards the charging station. He infers that his battery is
low and that he needs to recharge. In this case, the observer did not need to
track the other one’s attention to understand the underlying intention.

Example 2: Intention detection through attentional behaviour. One robot is look-
ing attentively at the closed door. The other robot infers that it attends to the
door because it wants to go outside. Here, tracking the attentional behaviour is
relevant to understand what the other robot intends to do.

Example 3: Intention detection through emotional behaviour. One robot kicks a
ball which then hits a toy. The robot emits a ‘sad’ sound, goes to the ball and
kicks it again. Now the ball rolls through the door to another room. The robot
emits a ‘happy’ sound. Based on these two signals the other robot can interpret
that it wanted to kick the ball out of the room.

To reach joint attention an agent must understand, monitor and direct the in-
tentions underlying the attentional behaviour of the other agent. Joint attention
can only be reached if both agents are aware of this coordination of “perspec-
tives” towards the world (Hobson, 2002). In the same way that attention cannot
be reduced to visual orientation, joint attention is much more than a geometrical
phenomenon. It needs to be understood as a crucial step in the development of
social cognition.

8.2.3 The prerequisites of joint attention

Reaching joint attention implies at least four kinds of prerequisites.

– Attention Detection. An agent must be able to track the attentional be-
haviour of other agents. This may imply being able to follow the gaze of
another agent.

– Attention Manipulation. Agents must be able to manipulate the atten-
tional behaviour of other agents. The use of pointing gestures or words can
be used in that respect.

– Social coordination. Agents must be able to engage in coordinated inter-
action with other agents. This implies mastering social techniques such as
turn-taking, role-switching and ritualised games.

– Intentional understanding. Agents must view themselves and others as
intentional agents. They must understand that others have intentions pos-
sibly different from their own. Agents capable of intentional understanding
interpret and predict the behaviour of other agents in terms of means used
to reach particular goals.

The rest of the chapter examines data drawn from developmental psychol-
ogy on the development of these capabilities and discusses existing robotic and
computational models for each of them. Distinguishing between these four kind
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of skills helps clarifying the developmental picture underlying the emergence
of joint attention. However, we do not claim that these different prerequisites
appear from independent developmental pathways. On the contrary, it could
be argued that, at several stages of this developmental process, skills for at-
tention detection, attention manipulation, social coordination and intentional
understanding are intrinsically linked.

Table 1. Different cases of simultaneous looking

Case Active /
Passive

Attention
detection

Unilateral
/ Bilateral

Case 1: Simultaneous Looking triggered by a
salient event or a “pop-out” effect

Passive No -

Case 2: Coincidental simultaneous looking Active No -

Case 3: Gaze following Active Yes Unilateral

Case 4: Coordinated gaze on same object Active Yes Bilateral

8.3 Developmental Timeline

We will now discuss at what age the different skills and prerequisites for joint
attention arise in young children during their development. Table 2 presents
these skills in the temporal order in which they occur first between three and
24 months when joint attention is fully developed. For better illustration, some
situations on attention detection and attention manipulation are displayed in
figure 2 using Sony AIBOs. Several of these developmental landmarks are subject
to controversial arguments. Some of these controversies are shortly discussed in
this section. But discussing the detailed experimental evidences underlying each
milestones is beyond the scope of this review. This timeline is only intended to
give a general overview of the parallel development of each prerequisite of joint
attention.

8.3.1 Attention detection

In the first month of their lives, children progressively bootstrap the capability
to pay attention to a growing number of things in their environment: their own
body, external objects, animate beings, etc. During this developmental process,
they start paying attention to the attentional behaviour of other agents.

T1.1 Mutual gaze. (Figure 2a) Mutual gaze between an adult and a child occurs
first around the age of three months. At this age, the child shows a strong prefer-
ence towards face-like patterns and is capable of recognising and maintaining eye
contact. This sensibility of eye contact is also reported in the behaviour of many
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Table 2. Developmental timelines of the prerequisites for joint attention

Age
from:

Attention detec-
tion

Attention manip-
ulation

Social coordina-
tion

Intentional un-
derstanding

0-3
m

T1.1 Mutual gaze
- Eye contact detec-
tion

T3.1 Protocon-
versations: Simple
rhythmic interac-
tion including turn-
taking mediated by
the caregiver.

T4.1 Early iden-
tification with
other persons

4 m T3.2 Possibility of
breaking interac-
tions

6 m T1.2 Discrimina-
tion between left
and right position
of head and gaze

T3.3 Shared
games: Conven-
tional routines
established between
the child and the
caregiver

T4.2 Animate-
inanimate dis-
tinction: discrim-
ination between
physical and social
causality

9 m T1.3 Gaze angle
detection - fixation
on the first salient
object encountered

T2.1 Imperative
Pointing: Drawing
attention as a re-
quest for reaching
an object (attention
not monitored)

T3.4 Simple
immediate imi-
tation: The child
commonly imi-
tates a movement
performed by the
caregiver. Evidence
of capabilities for
sequence learning.

T4.3 First goal-
directed be-
haviours. Evidence
of domain-general
inferential abilities

12 m T1.4 Gaze angle
detection - fixation
on any salient object
encountered - Accu-
racy increased in the
presence of a point-
ing gesture

T2.2 Declarative
Pointing: Drawing
attention using ges-
tures

T4.4 Goal un-
derstanding.
Observed behaviour
understood as
goal-directed

13 m T2.3 Declara-
tive/Referential
words: Drawing
attention using a
word

18 m T1.5 Gaze follow-
ing toward object
outside the field of
view - Full object
permanence

T2.4 First pred-
ications: Drawing
attention using non-
linguistic gesture for
the topic and a word
to specify which
aspect of the object
should be attended

T3.5 Complex
imitative games
Social exchanges
using imitation
including conven-
tional routines and
role-switching

T4.5 Intentional
understanding.
Children under-
stand that different
action plans can be
associated with the
same goal.

24 m T2.5 Conversa-
tions: Both topic
and aspect can
now be specified
linguistically
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a) b)

c) d)

Fig. 2. Demonstration of different situations preceding joint attention during
development. a) Mutual Gaze. Both robots are attending to each other’s gaze
simultaneously. b) Gaze Following. One of the robots is paying attention to an
object, the other one watches its eyes in order to detect where it is looking. c)
Imperative Pointing. Pointing to an object regardless whether another person
or robot is attending. d) Declarative Pointing. Pointing to an object to create
shared attention.

animals, in particular in primates (Cheney and Seyfarth, 1990). Mutual gaze is
a special case of attentional behaviour since it does not involve any objects or
persons apart from the two involved.

T1.2-5 Gaze following. (Figure 2b) At the age of six months, the first true inci-
dent of attention detection starts. The child is able to attend to an object in the
correct side of the room depending on where the adult is looking at (T1.2). The
angle error between the attended object of the adult and the attended object of
the infant can be as large as 60 degrees (Butterworth, 1995). Only at the age of
nine months can the gaze direction of the adult be accurately detected, however,
always the first object within the line of sight is chosen (T1.3). The correct
object can be attended to by the age of twelve months (Butterworth and Jarrett,
1991) taking into account vergence and probably context (T1.4). By this age,
only objects which are in the field of view of the child are being considered, even
though the child is already turning to sounds coming from behind (Butterworth,
1995; Butterworth and Cochran, 1980). Only at 18 months, children start
following the gaze of an adult to objects outside their field of view (T1.5). If
directing the gaze towards an object is supported by also pointing towards
that object, the accuracy of attending to the correct object increases in infants
older than twelve months (Butterworth, 1995). Before that age, pointing is not
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understood by the child and does not make any difference to the child’s attention.

8.3.2 Attention manipulation

Skills which fall into the category of attention manipulation are the act of point-
ing at something and the use of language. We differentiate between drawing
attention to oneself and to others or other objects since the first ability is al-
ready present in the first month of a child’s life.

T2.1 Imperative pointing. (Figure 2c) The first occurrence of pointing, imper-
ative pointing, starts around the age of nine months (Baron-Cohen, 1997). Im-
perative pointing is the request for a certain object, using a gesture. Imperative
pointing might be an extension of grasping an object, and it also occurs when
nobody who could pay attention is present in the room. This means that the
attention is not monitored.

T2.2 Declarative pointing. (Figure 2d) At twelve months, shortly before the
use of linguistic symbols, pointing starts to become declarative. It is used to
draw someone’s attention to something which might also be outside of reach
for the adult, such as objects like the sun or an aeroplane. One could think
that this pointing behaviour results from an imitation of the gestures of the
adult. However, some studies with young children found no relation between the
production of pointing and the comprehension of pointing (Desrochers et al.,
1995). This would mean that attention directing skills emerge independently
from capabilities in attention following. This issue is still under debate.

T2.3 Declarative/Referential words. After drawing attention using gestures, the
child starts to use single words to draw attention to objects or persons around
the age of 13 months.

T2.4-5 First predications. First predication follows at about 18 months, and
already requires building of a simple context representation. At this age, the
child specifies the subject of interaction by pointing and then adds a comment
linguistically in order to draw the attention of the adult towards a particular
aspect of it (e.g. “big”) (T2.4). By the age of 24 months, both the topic and the
comment start to be expressed linguistically (e.g. “big dog”) (T2.5).

8.3.3 Social coordination

Social coordination is a crucial element for the development of social cogni-
tion. Starting from simple shared rhythmic patterns, children manage to engage
in increasingly complex routines with their parents. In the first months, these
“games” are usually initiated by the parent, but become more symmetrical later
on. The structure of interactions becomes conventionalised through negotiation
processes involving child and parents. Like good dancers, children learn to find
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the right equilibrium between following the rhythm and breaking it to keep the
interaction entertaining.

The development of social coordination is not limited to behavioural patterns.
Through interpersonal couplings, children and caregivers adapt to coordinate
emotions, perspectives and goals. From early one-to-one interactions (dyadic),
more complex coordination patterns gradually emerge involving external enti-
ties (triadic). This step is tightly linked with the development of new attention
detection and attention manipulation skills, as well as new forms of behavioural
understanding. Coordination extends in time, involving longer shared plans.

T3.1-2 Protoconversation. Six-week old children are already communicating ex-
tensively face-to-face with their caregiver. These first simple rhythmic interac-
tions are crucial for the development of social know-how (Trevarthen, 1979).
Newson argues that these early social responses are treated by the adult as nor-
mal social behaviour (Newson, 1979). For instance when the child does something
that can be interpreted as role switching or change in the course of the “dialog”,
the adult adapts in order to make it become meaningful. In such conditions,
these proto-dialogs exhibit already simple turn-taking behaviours. As the adult
scaffolds these interaction into structured dialogs, children learn to predict the
social effects of their behaviour (Schaffer, 1977). By the age of four months, chil-
dren are able to break their caregiver’s gaze in order to look at other things in
the world (Siegel, 1999) (T.3.2). This opens to the possibility of more complex
interactions.

T3.3 Shared games. Each caregiver develops his or her own set of conventional
games. By the age of six months, a child manages to master an important number
of them. These ritualised structures play a crucial role for defining roles and
imposing consistency and predictability in social exchanges (Kaye, 1982). A key
point is that games are not simply learned by the child in a passive way. Each
conventional routine is the result of a negotiation, where both the child and the
caregiver adapt in order to reach a common coordination pattern.

T3.4-5 Imitative games. A common interaction routine consists in the immediate
imitation by the child of a movement produced by the caregiver (T3.4). This
skill, already present in the very young infant, gradually develops and is used
commonly around nine months. Nadel has emphasised the role of such immediate
imitations for bootstrapping social exchanges in particular for turn-taking, role
switching and in order to share topic (Nadel, 2002). Around 18 months, it starts
to be used inside complex games as children manage to understand observed
behaviour in terms of goals and means (T3.5). Other forms of complex social
interaction appear in parallel. They involve the same components: coordination
of action, attention and intention patterns.

8.3.4 Intentional understanding

Tomasello argues that a crucial behavioural transition occurs around twelve
months (Tomasello, 1995). Before one year, children begin following and directing
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the attention of other persons, but do not view them as intentional agents. At
the beginning of the second year of their life, they demonstrate a qualitative
change in the nature of their behaviour. Complex social skills such as social
referencing, imitative learning or symbolic communication with gestures appear
almost simultaneously (see table 2). This synchrony suggests that a radical shift
has occurred in children’s awareness of their environment: they have developed
intentional understanding.

There is a vast range of theories on how to interpret this shift from totally
nativistic to totally cultural hypotheses. For instance, Trevarthen argues that
children view other persons as intentional agents from birth, independently
from any prior experience (Trevarthen, 1979). Similar views are supported
by other authors who consider that humans are hardwired from birth to
interpret autonomous behaviour as intentional (Asch, 1952; Premack, 1990).
On the opposite side, other researchers like Kaye believe that children construct
the notion of intentional agents totally from experience. During the first
year of their life, an important part of children’s experiences are mediated
by the parents. The fact that parents treat children as intentional agents
even before they are such may also play an important role for their develop-
ment of intentional understanding (“parents create persons”) (Kaye, 1982).
These views are sometimes criticised on the ground of the important cultural
differences that exist around the world about the way to nurture young children.

The kind of skills needed to achieve intentional understanding are less easy
to identify than for the other prerequisites of joint attention, and the related de-
velopmental timelines are often controversial. Several authors have stressed that
the intentional understanding involves at least two kinds of capabilities: parsing
skills and processes for making inferences and plans about hidden states
(Baird and Baldwin, 2001; Povinelli, 2001; Wellman and Phillips, 2001).

Parsing consists in discovering statistical regularities and segmenting ob-
served behaviours into separated action-units. For each action-unit, relevant
perceptual features must be spotted for anticipating the following sequences of
actions. For instance, statistical regularities about attentional behaviour toward
objects can inform about the target that an agent tries to reach.

Intentional understanding might also imply the development of prediction
systems capable of handling hidden states (not directly perceivable) such as
goals, emotions or tastes of others. Moreover, intention systems are typically
structured in a hierarchical manner. Goals at one level are realized through sub-
goals and take part of higher action plans. Handling such embedded structures
requires complex prediction systems.

These two kinds of processes are likely to work in close concert guiding
rapid processing and interpretation of others. Their development may be closely
coupled (Baird and Baldwin, 2001) but they may also result from independent
developmental (or evolutionary) histories. Povinelli in particular argues that
apes display some advanced form of behaviour parsing but are not capable
of making complex inferences about mental states of others (Povinelli, 2001).
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Other data suggest that at least some aspects of intentional action can be
understood by apes (Tomasello et al., 2003).

Eventually, detecting cues of intentional behaviours and reasoning about
mental states may not be sufficient in the absence of a process to match and
discriminate one’s own action with the ones of others. This identification be-
tween self and others is a necessary developmental step for the acquisition
of intentional understanding. Let us now consider more precisely when these
different skills in the first two years of a child’s life arise.

T4.1 Early identification. Early identification with other persons, taking the
form of simple imitative behaviours, has been observed in the first months of
life. To explain these experiments, some totally or partially nativist theories
have been put forward (Meltzoff and Gopnick, 1993; Moore and Corkum, 1994).
Whatever their innate basis is, these neonatal forms of imitation make children
exposed to situations in which their intention and the one of the adult happen
to converge. They may play a role for the progressive distinction by the child of
the first and third person perspectives.

T4.2 Animate/inanimate distinction. Distinction between animate and inani-
mate objects is thought to emerge gradually during the first six months of a
child’s life. Discrimination of moving objects is observed at birth. Early sensi-
bilities to self-propelled movement and discrimination between mechanical and
biological motions have been experimentally reported for two-months old chil-
dren (Bertenthal, 1996). At six months, children have been shown to distinguish
between physical causality (to pull, to push) and social causality (to pursue, to
avoid) (Rochat et al., 1997). 7-month-old children recognise that humans can
cause one another to move in the absence of physical contact but that inanimate
objects like blocks cannot (Woodward et al., 1993). Other experimental evidence
shows that by this age, some form of distinction between animate and inanimate
entities is active (Poulin-Dubois, 1999) (Sperber et al., 1994). Children at this
age may predict what animate actors will do in familiar situations, but not in
novel ones. This suggests that although they understand animate action, they
do not yet reason in terms of goals and intentions.

T4.3 Goal-directed behaviours. Piaget observes that children first start to dis-
play goal directed behaviour around nine months (Piaget, 1952). They may for
instance remove an obstacle in order to reach a particular place. This means
that they start to differentiate goals and means in their own behaviour and view
their own behaviour as intentionally-driven. At the same age, children also show
a beginning of awareness that some actions they observe are directed towards
particular objects (Wellman and Phillips, 2001). This shows initial competencies
in behaviour parsing. More generally, 9-month-old children have been shown to
possess domain-general inferential abilities that may serve as the basis for mak-
ing inferences about intentions (Baldwin et al., 1993).
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T4.4 Goal understanding. Goal-directed behaviour becomes common around
twelve months (Frye, 1991). Extensions of this discrimination for the interpre-
tation of the behaviour of other agents may occur as a consequence of this
first finding (Tomasello, 1995). At this age, children can infer the causal links
between actions of others and detect behavioural regularities between gaze di-
rection and goal-directed motor sequences. For instance they may be surprised
if someone looks at one toy and then grabs another one (Wellman and Phillips,
2001). Children at this age may understand that observed actions are directed
toward some particular target states, and recognise successes and failures in re-
peated attempts. However, Tomasello suggests that they do not yet understand
that various plans (intentions) can be associated with the same goal (Tomasello
et al., 2004)

T4.5 Intentional understanding. Experimental evidences that infants under-
stand other’s goals and intentions multiply at 18 months. At this age, children
who watched an adult engage in an unsuccessful behaviour imitate the model
by producing the intended action instead of the observed one ((Meltzoff, 1995),
see also (Carpenter et al., 1998) for similar experimental evidences). In other
experiments, 18-month-old children are shown to adapt to an unspecific request
like ‘give me some more’ by taking into account information that the adult pre-
viously displayed about his tastes and desires (Repacholi and Gopnik, 1997).
Several other experimental results show that at this age (and even a few months
before), children start to be capable of linking the means used with the targeted
goals and to analyse observed behaviour in those terms (Tomasello et al., 2004).
This new understanding serves as a basis for efficient social learning.

8.4 Robotic and Computational Models

The precise developmental route that leads to mastering the necessary skills
for joint attention is largely unknown. Robots are ideal tools to model the de-
velopment of joint attention. Their embodiment in the real world allows for
interactions between robots as well as interaction between humans and robots.
Experiments are - in contrast to observing the behaviour of children - repeat-
able and different aspects can be easily separated. The idea is not to directly
match data obtained in robotic experiments with quantitative results of the de-
velopmental psychology literature. Computational and robotic models are to be
understood as a source of inspiration for psychology. By showing which quali-
tative behaviours emerge out of a particular software architecture, physical em-
bodiment and environmental conditions, these models may shed new light on
observations made during children experiments.

In this section, we review the state-of-the-art research in developmental
robotics concerning joint attention and its various prerequisites. No system has
yet achieved true joint attention between a robot and a human or between two
robots in the sense we defined it in the previous sections. Several crucial steps
have started to be investigated, but important parts of this developmental puzzle
are still unexplored.
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8.4.1 Models for attention detection and attention manipulation

Table 2 shows that the child manages to make progress in detecting and manipu-
lating the attention of the adult through a series of steps of increasing complexity.
Some of these skills have already been designed by hand on a robot. Imai et al.’s
robot ‘Robovie’ (Imai et al., 2001) is able to attract a human’s attention by
pointing at an object and establishing mutual gaze. Kozima et al. (Kozima and
Yano, 2001) have designed the robot called ‘Infanoid’ that can track human faces
and objects with salient colour (T1.1), point to and reach for objects (T2.1), and
gaze alternatively between faces and objects (T1.2-4).

Scassellati describes how he intends to accomplish joint attention between the
robot and a human, but he mostly concentrates on issues related to attention
detection (Scassellati, 1999). So far, only the eye contact has been implemented
on the robot ‘Cog’. Applied techniques are face detection using ratio templates
(Sinha, 1996) and eye extraction (T1.1).

Some researchers tackle the development of attention detection, as opposed
to simply designing a system capable of doing it. Carlson and Triesch (Carlson
and Triesch, 2003) present a computational model of the emergence of gaze fol-
lowing based on reinforcement learning. They identify a basic set of mechanisms
sufficient for the development of this skill. The model has been tested in a virtual
environment by Jasso et al. (Jasso et al., 2004). Hafner and Kaplan demonstrate
how four-legged robots can learn to interpret pointing gestures of one another.
One of the robots takes the role of an adult and is pointing to an object, the
other robot, the learner, has to interpret the pointing gesture correctly in order
to find the object (Hafner and Kaplan, 2004). Nagai and colleagues describe a
learning module that learns the correlation between the gaze of a human and
an object in the visual field at a certain position. The robot progressively learns
to use the human gaze in order to find objects more rapidly (Nagai et al., 2002,
2003). This corresponds to the acquisition of gaze following (T1.2-5).

Several issues concerning the development of attention detection and manip-
ulation have not been addressed yet. How can pointing emerge from grasping
behaviour (T2.1)? How does declarative pointing appear (T2.2)? By which pro-
cess can words replace gestures for drawing attention (T2.3)? On which basis
does predication appear (T2.4, T2.5)?

8.4.2 Models for the emergence of social coordination

Several robotic experiments have emphasised the importance of structured in-
teractions (T3.3) for the development of higher social skills like language ac-
quisition (Breazeal, 2002; Steels and Kaplan, 2000b; Steels et al., 2002b; Steels
and Kaplan, 1999b), but a limited number of works has addressed the problem
of how shared interaction routines necessary for coordinating behaviour in joint
attention may develop.

Ikegami and Iizuka (Ikegami and Iizuka, 2003) use robots in a simulated en-
vironment to study turn-taking. Their experiment demonstrates the evolution of
a turn-taking behaviour for two robots when a fitness function explicitly favours
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such a behaviour (T3.1). Andry et al. (Andry et al., 2001) report several exper-
iments where a robot demonstrates immediate imitation for simple motor skills
(T3.4) and discuss how simple architectures could account for the emergence
of rhythmic interactions (T.3.1) including the possibility of breaking rhythm
(T3.2). Ito and Tani present an experiment where a human and a humanoid
robot engage in stable and unstable phases of interaction using particular en-
trainment dynamics (T3.2) (Ito and Tani, 2004). Imitation has recently been an
important topic of investigation (Dautenhahn and Nehaniv, 2002) but only a
few works investigate its role for social coordination.

Most of the work remains to be done for this aspect of joint attention. What
kind of reward structure must be present so that interaction and entrainment
spontaneously emerge (T3.1)? What dynamics lead to the formation of turns dur-
ing the interaction (T3.1)? How is the structure of new games captured (T3.3)?

8.4.3 Models for the emergence of intentional understanding

How can a robot start to view the behaviour of another robot as intentional?
Which techniques can it use to parse the behaviour of others in a meaningful
way? How can it start making inferences about hidden states? Almost no prior
art in the developmental robotics literature deals explicitly with these issues.

Goals and intentions are of course central issues for classical artificial intelli-
gence. Research in this area has influenced the way we consider decision making
or planning. More recently, research on agent architectures (Dignum and Conte,
1998) has put a major emphasis on the same issues. However their models do not
give much insights on the developmental and cognitive mechanisms that lead to
the notion of intentionally-directed behaviour.

Behaviour parsing has been indirectly addressed by a variety of experiments
in research concerning the symbol grounding and anchoring problem (Harnad,
1990; Coradeschi and Saffiotti, 2003). Most works implement a set of perceptual
primitives capable of extracting relevant features in action sequences (e.g.(Roy
and Pentland, 2002; Siskind, 2001; Dominey, 2003; Steels and Baillie, 2003)).
But these models do not address the issue on how such perceptual primitives
may arise in a developmentally convincing way. Moreover, most of these works
present experiments done in very carefully controlled environments in order to
obtain satisfactory results with state-of-the-art artificial vision techniques. In-
deed, object segmentation and recognition are very difficult to perform in real
complex environments, especially when templates of the targeted objects are not
known in advance. Behaviour parsing stays an open issue for robotics.

In research on imitation, some authors have investigated the problem of
“what to imitate” in the observed behaviour of another agent (e.g. (Alissan-
drakis et al., 2000)). They address the issue on how to decompose and recreate
an observed behaviour. These questions can be considered to be central for the
emergence of behaviour understanding (T4.4-5). But they are only part of the
picture.

Intentional matching remains also an underinvestigated issue. Taking inspi-
ration from animal training techniques, Kaplan et al. showed how a robot could
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try to model its user’s expectations and adapts in order to perform a particu-
lar desired behaviour while keeping its general behavioural autonomy (Kaplan
et al., 2002). However the robot did not develop intentional understanding by
itself.

The development of intentional understanding is probably the most challeng-
ing prerequisite that research on joint attention has to investigate. None of the
milestones that we have identified in our timeline seem to have been already ad-
dressed in a satisfactory manner by computational or robotic models. What are
the mechanisms or dynamics that enable an agent to identify itself with other
agents of the same kind (T4.1)? How can it make the distinction between ani-
mate and inanimate entities (T4.2)? How can a robot discover the goal-means
distinction if these notions are not already explicit in its internal architecture
(T4.3-4)? How can it apply this insight to interpret the behaviour of other agents
(T4.5)?

8.5 Conclusions

Table 3. Open questions and challenges for joint attention in robotics

Attention detection and
manipulation

Social coordination Intentional understanding

How can pointing emerge
from grasping behaviour
(T2.1)?

How does declarative
pointing appear (T2.2)?

By which process can
words replace gestures for
drawing attention (T2.3)?

On which basis does
predication appear (T2.4,
T2.5)?

What kind of reward
structure must be present
so that interaction and en-
trainment spontaneously
emerge (T3.1)?

What dynamics lead to
the formation of turns
during the interaction
(T3.1)?

How is the structure
of new games captured
(T3.3)?

What are the mechanisms
or dynamics that enable
an agent to identify itself
with other agents of the
same kind (T4.1)?

How can it make the
distinction between ani-
mate and inanimate enti-
ties (T4.2)?

How can a robot discover
the goal-means distinction
if these notions are not al-
ready explicit in its inter-
nal architecture (T4.3-4)?

How can it apply this in-
sight to interpret the be-
haviour of other agents
(T4.5)?

The development of joint attention between a human and a robot or between
two robots depends on the successive appearance of a number of underlying
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skills. The aim of the present chapter is to identify the challenges and to
pinpoint what kinds of results are still to be obtained in order to succeed in this
goal. The overall picture that arises from this survey is a fragmented puzzle.
Important research efforts currently focus on skills for attention detection, but
most of the issues regarding the other prerequisites are only partially modelled
(Table 3). The most underinvestigated aspects of this problem is the modelling
of the mechanisms responsible for the emergence of intentional understanding.
Understanding this crucial step in child development would open up the way to
the creation of robots with a qualitatively different kind of awareness, making
the problems of social learning easier and ultimately leading to the development
of true joint attention.

The challenges of joint attention show tight similarities with the challenges of
imitation, which currently receive much attention in the developmental robotics
community (Dautenhahn and Nehaniv, 2002). Likewise, the emergence of imita-
tive capabilities involves attention detection, social coordination and intentional
understanding. Understanding the interplay between the development of these
prerequisites is the core issue of these two problems.

The contribution of computational and robotic models can take two forms.
Most of the models focus on a single developmental step (e.g. showing the emer-
gence of gaze following when an adequate reward system is present). The in-
creasing number of models permits a better understanding of what are the easy
and hard parts of the problem. However, by studying the development of each
prerequisite in a separated manner, these models may not capture synergetic
dynamics linking their parallel development. Instead of designing different mod-
els to study independently attention detection, attention manipulation, social
coordination or intentional understanding, one strategy could be to build archi-
tectures with generic developmental principles and to study which embodiment
and environmental conditions lead to the simultaneous development of these
skills. Current results obtained with a generic architecture for autonomous men-
tal development may be considered too preliminary to deal with issues like joint
attention. Nevertheless, such models may offer interesting new perspectives by
explicitly addressing the links between the development of perception, action
and interpersonal coupling.

To be understood properly, the development of joint attention must be under-
stood as a whole. To account for the complete picture, models must reenact the
coordinated development of skills like gaze following, declarative pointing, rit-
ualised games, behavioural parsing, intentional inferences and matching. These
interconnected challenges account for the pivotal role played by joint attention
in the development of social cognition. We believe robots are ideal tools to make
progress in the study of these complex issues.
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Prerequisites related to the Communication
Medium

Pierre-Yves Oudeyer

Sony CSL Paris

9.1 The physical medium of communication: the need for
a system of labels

Communication relies on the existence of a physical system which can carry in-
formation. For example, humans can use speech sounds, visual signs or writing.
Each of these systems is a conventional code which defines how humans can use
the physical medium to build forms which can carry information. For example,
the speech system is a code which defines for each linguistic community how the
continuous space of sounds is broken up into perceptual categories. These cate-
gories are used to build a shared set of acoustic labels by which human can speak
to each other. It is a necessity that embodied communicating agents possess this
sort of shared systems of physical forms, which we will call “label systems”. It
is not reasonable to think that a label system could be pre-programmed into
artificial communicating agents, because it is both unpractical and not flexible:
agents with different label systems can not communicate.

If one wants to build embodied communicating agents, then it is a major
challenge to provide them with mechanisms which lead to the formation of shared
label systems which can transmit information in a robust and adaptive manner
in noisy and changing environments. A constraint that should be always applied
is that we should not pre-suppose anything about the properties of the physical
medium on which they will develop form systems. For examples, this might
be sound or vision through real sensors and actuators, and not only electrical
impulses through cables.

Yet, this objective of building embodied communicating agents can be
reached if we take inspiration from existing label systems, such as the human
speech code. As a consequence, the technological challenge calls for a scientific
challenge: can we understand the principles of formation of human label sys-
tems? We will now detail the example of the human speech code, This will allow
us to explain more precisely both these scientific and technological challenges.

9.2 The human speech code: an example of robust and
adaptive label system

The human speech code is of extreme interest because it is a label system both
very efficient and robust working on a high-dimensional continuous noisy inho-
mogeneous physical medium. Indeed, the vocalization of a word, i.e. a sequence



of phonemes, is achieved through the physical movement of many articulators
in the human vocal tract, combined with the vibration of the glottis, which pro-
duces an acoustic wave, which propagates in a noisy environment full of other
uncorrelated sounds, and then activates the cochlear neurons of the receiver. Of
course, the vocalization of the same word by the same speaker never produces
exactly the same movements of the articulators, because they are sensitive to
many external parameters like the speed of talking, the degree of arousal or the
degree of humidity in the mouth. Moreover, each speaker has a different vocal
tract and a different acoustic sensibility. Yet, humans can pronounce and recog-
nize easily five words per seconds, which is about 20 phonemes per seconds. If
we reformulate this in terms of information theory, the speech code is an error
correcting code which is highly efficient. But to the difference of all error correct-
ing codes which are used in the computer technologies to transmit “bits” over
noisy channels, like hash-codes or turbo codes, the human speech code is not
pre-wired and fixed: it is a culturally established adaptive code. Its strength is
that is builds on a mechanism which allows agents who do not already share con-
ventions to develop one that will allow them to communicate. On the contrary,
a machine which has a pre-programmed code like hash-code to transmit labels
to other machines will never be able to communicate with a machine which has
a pre-programmed turbo code to transmit label to other machines.

This is why it is interesting to look more closely at some crucial properties
of the human speech code:

– Property 1 (discreteness and combinatoriality): speech sounds are
phonemically coded as opposed to holistically coded. This implies two as-
pects: 1) in each language, the continuum of possible sounds is broken into
discrete units; 2) these units are systematically re-used to build higher level
structures of sounds, like syllables.
For example, in articulatory phonology (Browman and Goldstein, 1986), a
vocalization is viewed as multiple tracks in which gestures are performed
in parallel (the set of tracks is called the gestural score). A gesture is the
combination of several articulators (e.g. the jaw, the tongue) to perform a
constriction somewhere in the mouth. The constriction is defined by the place
of obstruction of the air as well as the manner. While for example, given a
sub-set of organs, the space of possible places of constrictions is a continuum
(for example the vowel continua from low to high, executed by the tongue
body) each language uses only a few places to perform gestures. This is what
we call discreteness. Furthermore, gestures and their combinations, that may
be called “phonemes”, are systematically re-used in the gestural scores who
specify the syllables of each language. Some researchers call this “phonemic
coding”.

– Property 2 (phonotactics and patterns): The way phonemes are com-
bined is also very particular: 1) only certain phoneme sequences are allowed
to form a syllable in each language, the set of which defines the phonotactics
of the language (for example, “spink” is a possible syllable in English, but
“npink” and “ptink” are not possible; in Berberian, “tgzmt” and “tKsmt”
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are allowed, but impossible in French); 2) the set of allowed phoneme com-
binations is organized into patterns. This organization into patterns means
that for example, one can summarize the allowed phonemes of Japanese
by the patterns “CV/CVC/VC”, where “CV” for example defines syllables
composed of two slots, and in the first slot only the phonemes belonging
to a group that we call ”consonants” are allowed, while in the second slot,
only the phonemes belonging to the group that we call ”vowels” are allowed.
The phonotactics of a language introduce constraints which help in speech
recognition: it provides equivalents of error correcting codes when the hearer
of an utterance is in a noisy environment.

– Property 3 (sharing): the speakers of a particular language use the same
phonemes and they categorize speech sounds in the same manner. Yet, they
do not necessarily pronounce each of them exactly the same way. They also
share the same phonotactics. This is what makes it a conventional code.

– Property 4 (diversity): At the same time, each language categorizes
speech sounds in its own way, and sometimes does it very differently from
other languages. For example, Japanese speakers categorize the “l” of “lead”
and the “r” or “read” as identical. Different languages may also have very
different phonotactics. This shows the flexibility with which the acoustic
physical medium can be used by different societies of speakers. This also
shows that the speech code is really created culturally, and not pre-coded in
the genes of speakers.

9.3 Challenges

9.3.1 Learning an existing code

A first challenge is to understand how human infants acquire the human speech
code, and how one could build a machine which performs the same task. This
involves several levels of skills:

– Learning perceptual categories: Very early on and even before they can
produce any articulate speech sounds, infants are able to categorize appropri-
ately the sounds of their environment language (Vihman, 1996). They learn
the perceptual code of their parent’s vocalizations: English infants learn for
example that the [l] in “lead” is a different sound category than the [r] in
“read” while Japanese infants learn that these are the same sound category.
Chinese learn that [ma] with different pitches correspond to different cat-
egories while French infants learn that they are the same. This learning is
largely unsupervised and happens well before infants understand the mean-
ing of words. It is still a mystery how they achieve this, and no machine is
currently able to perform as well as they do.

– Learning to control the vocal tract: The control system of the vocal tract
of human adults is highly complex since it enables to move concurrently and
in a coordinated manner dozens of muscles and articulators. Learning to per-
form non-trivial constrictions (obstructions of the air flow which modulate
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the sound source produced by the glottis) is thus a motor task as difficult as
for example the reaching of objects with the arm. Infants take a while before
they can produce the complex movements which are needed to produce the
speech code of adults. Understanding this process of motor exploration and
learning is an open question and it is a challenge for Embodied Communicat-
ing Agents to manage to modulate in complex manners a physical medium
such as the high dimensional vocal tract.

– Learning the mapping between acoustic waves and motor com-
mands: Once perceptual categories and complex motor control are mas-
tered, the main challenge remains. Indeed, the infant needs to be able to
find the motor commands corresponding to a given speech acoustic wave
that it perceives, and he needs to be able to associate a motor command
with a perceptual category. In brief, he needs to learn the correspondences
between the two spaces. This task has several complications: 1) the mapping
is not one-to-one, because there are many articulatory configurations which
produce the same sound; 2) the mapping needs to be learnt not only for the
two spaces of the infant, but also between for example the acoustic speech
waves produced by adults and its own motor space. This introduces a high
difficulty since no two individuals have exactly the same vocal tract, and
in particular the adult vocal tract is very different from the infant’s vocal
tract. For Embodied Communicating Agents, this case is typically very fre-
quent, since two agents typically have different bodies and possibilities to
modulate a physical medium such as acoustic waves. Another complication
is, as explained earlier, that the same word is never pronounced exactly the
same manner by the same speaker, and is subject to a high level of noise.
One phoneme for example can be vocalized in a very different manner de-
pending on the context, because of co-articulation. Yet, the infant is able to
consistently categorize streams of acoustic waves into streams of phonemic
categories. Embodied Communicating Agents should be able to do that.

9.3.2 The formation of a shared code

Learning an existing speech code is one thing. The creation of a new shared code
in a population of agents is another one. The question of how a conventional
speech code such as the French vocalization system or the Chinese vocalization
system might have formed needs to be answered. And how similar codes can
be formed by populations of artificial agents? Both questions can be declined
in two versions, depending on the assumptions that we make about the initial
level of the social and cognitive capacities of the agents. A first version concerns
the case where agents already possess rich modes of social coordination, possibly
including already some conventions such as interactional rituals or the capacity
to play language games (Steels, 1997b). The question is then, given a set of
conventions that they already share, how they can use them to create a new
one. In this case, because we assume complex social and cognitive capabilities of
the agents, we should also expect that the label system that they form has the
complexity, the robustness, and the adaptivity shown by for example the human
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speech code. This means on the one hand that the label system should be able
to use efficiently a high-dimensional continuous non-linear noisy channel such
as the vocal tract/acoustic waves/ear medium. This also means that the label
system possess all the properties that we listed in the previous section, possess
hundreds of perceptual categories, and possess phonotactics. The code should
be robust to a continuous flux within and out of the population of agents, and
might possibly evolve with time.

A second version of the challenge concerns the case where agents already
possess neither means to coordinate socially nor conventions (including those
like language games). This is a scientific challenge as much as a technological
challenge. Indeed, from a scientific point of view, this version of the question is
crucial to the understanding of the origins of language. Indeed, a conventional
physical system of labels, as a vehicle of information, is a pre-requisite for linguis-
tic communication. Without such a label system, no linguistic communication
is possible. Thus, it is crucial to understand how the bootstrapping of the first
label system was made in a population of humans which did not already pos-
sess conventions such as interactional frameworks like language games (which
pre-suppose already the existence of primitive conventional symbolic systems).
From a technological point of view, this is also a very useful challenge since it
would allow machines which do not already share means to coordinate socially
to build an initial label systems, a building block necessary for their access to
mutual communication.

9.3.3 Understanding the role of morpho-perceptual constraints

As a scientific challenge, it is also a necessity to understand which aspects of the
human speech code are due to the constraints of the particular physical medium
on which it relies, and which aspects are not. In turn, even if in general one
should not pre-suppose particular properties of the physical medium for general
methods of label systems formation in embodied communicating agents, this
could be useful in some cases to take care of the physical design of this medium
so that the information transfer is maximally robust, efficient and adaptive.

More particularly, this challenge includes the problem of knowing whether the
discreteness and combinatoriality (the phonemic coding) of the human speech
code is a consequence of the non-linearities between the articulatory and percep-
tual spaces. We should also understand what is the link between the statistical
preferences of human phonemic repertoires and the morpho-physiological con-
straints. In the same line, we should understand if phonotactics is more the result
of optimizing the error correction in information transmission or the consequence
of energetical or motor constraints.

9.4 Existing approaches: scopes and limits

There is now a growing literature on the origins of human speech systems, which
try to understand where the organization of the human speech code comes from.
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We will now detail a number of representative approaches, each time explaining
the scopes and the limits.

9.4.1 The reductionist approach

One of the approaches is “reductionist”: it tries to reduce properties of the speech
system to properties of some of its parts. In other words, this approach hopes
to find a physiological or neural structure whose characteristics are sufficient to
deduce the properties of speech.

For example, cognitive innatism (Chomsky and Halle, 1968; Pinker and
Bloom, 1990) defends the idea that the brain features a neural device specific to
language (the Language Acquisition Device) which knows at birth the proper-
ties of speech sounds. This knowledge is supposed to be pre-programmed in the
genome. A limit of this approach is that its defenders have remained rather im-
precise on what it means for a brain to know innately the properties of language.
In other words, this hypothesis is not naturalized. Also, no precise account of
the origins of these innate devices has ever been provided.

Other researchers focus on the vocal tract physics as well as on the cochlea
electro-mechanics. For example, they claim that the categories that appear in
speech systems reflect the non-linearities of the mapping from motor commands
to percepts. Phonemes would correspond to articulatory configurations for which
small changes lead to small changes in the produced sound. Stevens (1972) de-
fends this idea. There is no doubt that the morpho-perceptual apparatus influ-
ences the shape of speech sounds. Yet, this reductionist approach has straightfor-
ward weaknesses. For example, it does not explain the large diversity of speech
systems in the world’s languages (Ladefoged and Maddieson, 1996). Also, there
are many experiments which show that the zones of non-linearity in perception of
some languages are not compatible with those of some other ones (e.g. Japanese
do not make any perceptual difference between the “l” of “lead” and the “r” of
“read”).

Another example of this type of explanation is that of Studdert-Kennedy
and Goldstein (2003) for the origins of discreteness, or “particulate speech” in
his terms. Studdert-Kennedy and Goldstein remark that the vocal apparatus is
physiologically composed of discrete independent articulators like the jaw, the
tongue, the lips, the velum, etc. This implies that there is some discrete re-
use in complex utterances due to the independent articulators that move. We
completely agree with this remark. Yet, some other aspects of discreteness are
not accounted. Indeed, for example, as Studdert-Kennedy and Goldstein (2003)
note, once you have chosen to use a given set of articulators, there remains
the problems of how the continuous space of possible constrictions or timings
between gestures is discretized. Goldstein (2003) proposed a solution to this
question that we will review later in the chapter (since it is not reductionist but
is a mixture of self-organization and functionalism).

One has to note that this “reductionist” approach proposes answers to the
questions concerning the presence of phonemic coding and statistical preferences
in the human speech code, but they address neither the diversity of speech sounds
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nor the fact that they are shared across communities of agents. In fact, they are
of limited help for the building of embodied communicating agents, since they do
not address the question of the formation of speech codes with these properties
(they only address “why” questions). But one has to say that this is certainly
not their goal either.

9.4.2 The functionalist approach

The functionalist approach attempts to explain the properties of speech sounds
by relating them to their function. Basically, it answers the “why” question by
saying “the system has property N because it helps to achieve function F”. It
answers the “how” question by saying “systems with property N were formed
through Darwinian evolution (genetic or cultural) under the pressure to achieve
function F”. This approach could also be called “adaptationist” : systems with
property N were designed for (“ad”) their current utility (“apt”). Note that
most often the functionalist explanations take into account the constraints due
to brain structure, perceptual and vocal systems.

Typically, in the case of the four properties of speech sounds we are inter-
ested in, this function is “communication”. This means that the sounds of a
speech code may be perceptually distinct enough so that they are not confused
and communication can take place. The constraints which are involved typically
include a cost of production, which evaluates how much energy is to be spent to
produce the sounds. So, in this view, speech sounds are a reservoir of forms which
is quasi-optimal in terms of perceptual distinctiveness and energy production.

For example, Lindblom (1998) showed that if we search for vowel systems
which are a good compromise between perceptual distinctiveness and energy
cost of articulation, then we find the most frequent vowel systems in human
languages. Lindblom (1998) also showed similar results concerning the re-use of
units to form syllables.

Operational scenarios describing how cultural Darwinian evolution formed
these systems have also been described. For example, de Boer (2001) and
Oudeyer (2001) built computer simulations which showed how cultural evolution
might have worked, through processes of imitations among agents. In these sim-
ulations, the same mechanism explains both the acquisition of vowels (de Boer,
2001) or syllables (Oudeyer, 2001) and their formation; this mechanism is imi-
tation. As a consequence, these works also propose an answer to the question:
“How are vowel systems acquired by speakers?”.

One has to note that the models of de Boer (2001) and Oudeyer (2001) do not
deal with questions concerning discreteness (which is built in) and systematic
re-use. Yet, these models are interesting since they show a process of formation
of a convention, i.e. a vowel systems or syllable systems, within a population of
agents. This really adds value to the work of Lindblom for example, since it pro-
vides a mechanism of (implicit) optimisation which Lindblom (1998) assumed.

Yet, one has also to remark that the imitation game that agents play is
quite complex and requires a lot of assumptions about the capabilities of agents.
Each of the agents maintains a repertoire of prototypes, which were associations
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between a motor program and its acoustic image. In a round of the game, one
agent, called the speaker, chose an item of its repertoire, and uttered it to another
agent, called the hearer. Then the hearer would search in its repertoire for the
closest prototype to the speaker’s sound, and produce it (he imitates). Then the
speaker categorizes the utterance of the hearer and checks if the closest prototype
in its repertoire is the one he used to produce its initial sound. Then he tells the
hearer whether it was “good” or “bad”. Each item in the repertoires has a score
which is used to promote items which lead to successful imitations and prune
the others. In case of bad imitations, depending on the scores of the prototype
used by the hearer, either this prototype is modified so as to better match the
sound of the speaker, or a new prototype is created, as close as possible to the
sound of the speaker.

From the description of the game, it is clear that to perform this kind of
imitation game, a lot of computational/cognitive power is needed. First of all,
agents need to be able to play a game, involving successive turn-taking and
asymmetric changing roles. Second, they need to be able to voluntarily try to
copy the sound production of others, and be able to evaluate this copy. Finally,
when they are speakers, they need to recognize that they are being imitated
intentionally, and give feed-back/re-inforcement to the hearer about the success
or not. The hearer has to be able to understand the feedback, i.e. that from the
point of view of the other, he did or did not manage to imitate successfully.

The system developed by de Boer (2001) and extended by Oudeyer (2001)
addresses the first version of the questions proposed in the section entitled “The
formation of a shared code”. Indeed, the level of complexity needed to form
speech sound systems in this model is characteristic of a society of agents which
has already some complex ways of interacting socially, and has already a system
of communication (which allows them for example to know who is the speaker
and who is the hearer, and which signal means “good” and which signal means
“bad”). The imitation game is itself a system of conventions (the rules of the
game!), and agents communicate while playing it. It requires the transfer of
information from one agent to another, and so requires that this information
be carried by some shared “forms”. So it pre-supposes that there is already a
shared system of forms. The vowel systems that appear do not really appear
“from scratch”. This does not mean at all that there is a flaw in de Boer’s
model, but rather that it deals with the evolution of language rather than with
the origins (or, in other terms it deals with the formation of languageS - “les
langues” in French - rather than with the formation of language - “le langage”
in French). Indeed, de Boer presented interesting results about sound change,
provoked by stochasticity and learning by successive generations of agents. But
the model does not address the bootstrapping question: how the first shared
repertoire of forms appeared, in a society with no communication and language-
like interaction patterns? In particular, the question of why agents imitate each
other in the context of de Boer’s model (this is programmed in) is open.

Another model in the same spirit was proposed by Browman and Goldstein
(2000) and Goldstein (2003). This model is very interesting since it is the only
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one we know, except the work presented in the present chapter, which tries to
approach the question of the origins of the discretization of the continuum of
gestures (they call this “emergence of discrete gestures”).They built a simula-
tion in which two agents could produce two gestures, each parameterised by a
constriction parameter taken in a continuous one-dimensional space (this space
is typically the space of possible places of constrictions, or the continuous tem-
poral interval between two gestures). Agents interacted following the rules of
the “attunement game”. In one round of the game, both agents produced their
two gestures, using for each of them a parameter taken in the continuum with
a certain probability. This probability was uniform for both gestures at the be-
ginning of the simulation: this meant that a whole continuum of parameters was
used. Then, agents recovered the parameter of the other agent’s first gesture,
and compared it to the parameter they used themselves. If this matched, then
two things occurred: the probability to use this parameter for the first gesture
was increased, and the probability to use the same value for the second gesture
is decreased. This simulated the idea that agents are attempting to produce
both of their gestures differently (so that they are contrasted and can be differ-
entiated), and the idea that they try to produce each of them similarly to the
corresponding one of the other agent (so that a convention is established). At
the end of the simulations, agents converged to a state in which they used only
one value for each gesture, so the space was discretized, and these pairs of values
were the same for the two agents in the same simulation and different in different
simulations. Goldstein made simulations using and not using non-linearities of
the articulatory to acoustic mapping. Not using it led to the uniform use of all
parameters across all simulations, while using it led to the statistical preference
of parameters falling in the stable zones of the mapping.

Like the simulations in (de Boer, 2001; Oudeyer, 2001), in this model agents
have coordinated interactions: they follow the rules of a game. Indeed, they both
need to produce their gestures together in one round of the game. Secondly, as
in the “imitation game”, a pressure for differentiating sounds is programmed in,
as well as a pressure to copy the parameters of the other agent. This means that
it is supposed that agents already live in a community in which complex commu-
nication exists. Thus, it remains to be seen how discrete speech, which has been
argued to be crucial for the rise of language (Studdert-Kennedy and Goldstein,
2003), may have been there without supposing that complex communication has
already risen. More precisely, how discrete speech may appear without a pres-
sure to contrast sounds? This is one of the issues that this approach does not
solve. Also, in the model of Goldstein, one assumption is that agents directly
exchange the targets that they used to produce gestures (there is noise, but they
are still given targets). Yet, the vocalizations of humans are continuous trajec-
tories, first in the acoustic space, and then in the organ relation space. So what
a human gets from the gesture of another is not the target, but the realization
of this target which is a continuous trajectory from the start position to the
target. And because targets are sequenced, vocalizations do not stop at targets
but continue their “road” towards the next target. The task of recovering the
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targets from the continuous trajectory is very difficult, and at least has not been
solved by human speech engineers. Maybe the human brain is equipped with an
innate ability to detect events corresponding to targets in the stream, but this
is a strong speculation and so incorporating it in a model is a strong (but yet
interesting) assumption.

9.4.3 The “blind snow-flake maker” approach

There is another track of research, which we think has been left nearly unexplored
in the field of the origins of language, and speech in particular. This is what we
may call the blind snow-flake maker approach (by analogy with the “blind watch-
maker” of Dawkins (1986) which illustrated the functionalist approach). This
approach is typically adapted to answering the second version of the questions
proposed in the section “The formation of a shared code”. It is represented by
works like (Oudeyer, 2005).

When investigating the origins of a system like the human speech code, two
types of answers must be provided (Oudeyer, 2003). The first type is a func-
tional answer: it establishes the function of sound systems, and shows that human
sound systems have an organization which makes them efficient for achieving this
function. This kind of answer can be proposed using the functional approach that
we described earlier. For example Lindblom (1998) showed that statistical regu-
larities of vowel systems could be predicted by searching for the vowel systems
with quasi-optimal perceptual distinctiveness. This type of answer is necessary,
but not sufficient: it does not explain how evolution (genetic or cultural) may
have found these optimal structures, and how a community may choose a par-
ticular solution among the many good ones. Works such as the system presented
in (de Boer, 2001; Oudeyer, 2001) provide a first element of answer, at a cul-
tural level. But as we have explained, they assume capabilities for the agents
which are evolutionary complex and in fact pre-suppose some forms of primitive
linguistic capacities, such as the existence of primitive convention systems. The
complexity of these assumed capabilities does not allow to understand easily
how evolution could have formed them, even if we assume an explicit pressure
for communication. In particular, it is possible that “naive” Darwinian search
with random variations is not efficient enough for finding complex structures like
those of speech: the search space is too big (Ball, 1999). This is why we need yet
another answer: we have to account for how natural selection may have found
these structures. A possible way to do that is to show how self-organization
can constrain the search space and help natural selection. This may be done by
showing how a much simpler system can self-organize spontaneously and form
the structure we want to explain.

For illustration, it is useful to observe that the structure of the argumentation
this approach about the origins of speech is the same as the one of Thomson
(1961) about the explanation of hexagonal cells in honey-bees nests (see Figure
1). The cells in the honey-bees nests have a perfect hexagonal shape. How did
bees came to build such structures? A first element of answer appears if one
remarks that the hexagon is the shape which necessitates the minimum amount
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Fig. 1. The cells in the honey-bees nests (figure on the left) have a perfect
hexagonal shape. Packed water bubbles take spontaneously this shape under
the laws of physics (figure on the right). This lead D’Arcy Thompson to think
that these same laws of physics might be of great help in the building of their
hexagonal wax cells.

of wax in order to cover a plane with cells of a given surface. So, the hexagon
makes the bees spend less metabolic energy, and so they are more efficient for
survival and reproduction than if they would build other shapes. One can then
propose the classical neo-Darwinian explanation: the bees must have begun by
constructing random shapes, then with random mutations and selections, more
efficient shapes were progressively found, until one day the perfect hexagon was
found. Now, a genome which would lead a bee to build exactly hexagons must
be rather complex and is really a needle in a haystack. And it seems that the
classical version of the neo-Darwinian mechanism with random mutations is
not efficient enough for natural selection to have found such a genome. So the
explanation is not sufficient. D’Arcy Thompson completed it. He remarked that
when wax cells, with a shape not too twisted, were heated as they actually are by
the working bees, then they have approximately the same physical properties as
water droplets packed one over the other. And it happens that when droplets are
packed, they spontaneously take the shape of hexagons. So, D’Arcy Thompson
shows that natural selection did not have to find genomes which pre-program
precisely the construction of hexagons, but only genomes who made bees pack
cells whose shape should not be too twisted, and then physics would do the rest1.
He showed how self-organized mechanisms (even if the term did not exist at the
time) could constrain the space of shapes and facilitate the action of natural
selection.

1 This does not mean that nowadays honey bees have not a precise innate hard wired
neural structure which allows them to build precisely hexagonal shapes, as has been
suggested in further studies such as those of von Frisch (1974). The argument of
D’Arcy Thompson just says that initially the honey bees might have just relied
on the self-organization of heated packed wax cells, which would have lead them
to “find” the hexagon, but later on in their evolutionary history, they might have
incorporated in their genome schemata for building directly those hexagons, in a
process similar to the Baldwin effect (Baldwin, 1896) in which cultural evolution is
replaced here by the self-organization of coupled neural maps.
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Oudeyer (2005) uses a similar approach to find explanations of the origins
of human speech codes. (Oudeyer, 2005) presents a system which shows how a
speech code may form in a society of agents which do not already possess means
to communicate and coordinate in a language-like manner (as opposed to the
agents described in (de Boer, 2001; Kaplan, 2001; Oudeyer, 2001)) and which
do not already possess a convention and complex cognitive skills for linguistic
processing (as opposed to the agents in (Kirby, 1999b) for example). The agents
in this system have in fact no social skills at all. This shows how one crucial pre-
requisite of language, which is the existence of an organized medium which can
carry information in a conventional code shared by a population, may appear
without linguistic features being already there.

The self-organized mechanism of this system appears as a necessary comple-
ment to the classical neo-Darwinian account of the origins of speech sounds. It
is compatible with the classical neo-Darwinian scenario in which the environ-
ment favours the replication of individuals capable of speech. In this scenario,
the artificial system plays the same role as the laws of the physics of droplets in
the explanation of the hexagonal shape of wax cells: it shows how self-organized
mechanisms can facilitate the work of natural selection by constraining the shape
space. Indeed, the system shows that natural selection did not necessarily have
to find genomes which pre-programmed the brain in precise and specific ways
so as to be able to create and learn discrete speech systems. The capacity of
coordinated social interactions and the behaviour of imitation are also examples
of mechanisms which are not necessarily pre-required for the creation of the first
discrete speech systems, as this system demonstrates. This draws the contours
of a convincing classical neo-Darwinian scenario, by filling the conceptual gaps
that made it stay an idea rather than a real working mechanism.

Furthermore, in this system the same mechanism accounts for properties of
the speech code like discreteness, compositionality, universal tendencies, shar-
ing and diversity. This account is original because: 1) only one mechanism is
used to account for all these properties and 2) we need neither a pressure for
efficient communication nor innate neural devices specific to speech (the same
neural devices used in this chapter can be used to learn hand-eye coordination
for example). In particular, having made simulations both with and without
non-linearities in the articulatory/perceptual mapping allows us to say that in
principle, whereas the particular phonemes which appear in human languages
are under the influence of the properties of this mapping 2, their mere exis-
tence, which means the phenomenon of phonemic coding, does not require non-
linearities in this mapping but can be due to the sensory-motor coupling dynam-
ics. This contrasts with the existing views that the existence of phonemic coding
necessarily need either non-linearities, as defended by Stevens (1972) and Mray-
ati et al. (1988), or an explicit functional pressure for efficient communication,
as defended by Lindblom (1998).

2 the system can predict the most frequent vowel systems in human languages when
using a realistic model of the production and perception of vowels
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Oudeyer (2005) also studies an extension of this system allowing to study
the formation of rules of syntax for sounds combinations. It shows how similar
assumptions can also lead to the formation of primitive shared phonotactics as
well as phonological patterns. It also studies theoretically how the addition of
constraints such as non-linearities due to the articulatory/acoustic mapping or
such as the energetic cost of vocalizations could influence the statistical pref-
erences of populations of agents for certain kinds of phonotactics. This shows
that if one wants to be able to predict the actual phonotactics preferences in the
human languages, then it is crucial to take into account all the constraints as
well as their interactions.
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Stages and Computational Challenges

Luc Steels

SONY Computer Science Laboratory Paris

10.1 Introduction

This document focuses on how we could achieve self-organised human-like lan-
guage communication in artificial embodied communicating agents. By self-
organised, we will mean that the agents should be capable to autonomously
develop and negotiate a communication system, which is adapted to their com-
municative needs and the environments in which they operate. No human inter-
vention is required, neither for supplying the initial language nor for adapting
the language or training the agents. By human-like language, we mean that
the communication system has the properties defined in [section by Parisi], in
particular that the communication system is established and propagates in a
cultural rather than genetic fashion, and that it is representational, i.e. that a
rich conceptualisation of the world is being expressed (Talmy, 2000).

Human-like communication rests on many highly advanced prerequisites such
as routinised turn-taking, joint attention, speech recognition and production, and
grounded world modeling [see section by Hafner and Kaplan]. Here it is assumed
that such prerequisites are in place, either by some developmental process or by
prior scaffolding of the agents.

10.1.1 Motivation for Stages

From a research point of view, it is obviously extremely useful to identify a set
of stages or milestones with respect to human language, because then simpler
forms of language could be studied before tackling more difficult ones and we
could investigate transitions between stages, similar to the way this is done in
biology (Maynard-Smith and Szathmary, 1988). From an engineering point of
view, a division into stages is also very useful because we could then already
build useful applications without having to tackle the full complexity of human
language.

On the other hand, it is not so obvious to identify different stages in human
language, and there is definitely no consensus about it. All human languages are
known to have a similar level of complexity and expressive power, so different
stages are not so easily observable as in biological species. Bickerton (Bickerton,
1992) has proposed that there are two stages: a lexical stage, which he calls
proto-language and is similar to the language of 2-year olds or pidgins spoken
in trading contexts, and a grammatical stage, which has the complexity of full
human language. Jackendoff (Jackendoff, 1999) paints a more complex picture
with a dozen different stages. He includes for example a step in which a system



of grammatical relationships conveys a set of semantic relations, a stage in which
there is the emergence of a system of inflections, and so on. Jackendoff’s stages
are motivated by fossils that he identifies in existing human languages.

This paper proposes an alternative set of six stages, motivated by research
into the self-organisation of communication systems in artificial Embodied Com-
municating Agents. Each stage is characterised by a particular level of complexity
at the language side and a particular level of expressive power at the meaning
side. Each stage is assumed to build further on the capacities achieved atearlier
stages and requires a major ’breakthrough’. The stages proposed here do not
necessarily correspond to historical stages in human language evolution or child
language acquisition but are considered to be useful plateaus for structuring the
investigation and the engineering of embodied communicating Agents.

Apart from a precise identification of the expressive power and linguistic
complexity characteristic for each stage, we need to find answers to the following
four questions:

1. What are the cognitive functions and interaction protocols that an agent
needs in order to see the emergence of a communication system (including
a conceptualisation system) at the level of the group?

2. What kind of computational theory can causally explain these cognitive
functions and behaviors, i.e. what information structures and information
processes are necessary and sufficient to generate them?

3. What are plausible neurobiological embodiments of this computational the-
ory?1

4. How and why might a transition between two stages come about? A transi-
tion may either be achieved through genetic evolution introducing new cog-
nitive mechanisms, or by the recruitment from existing cognitive strategies
of the best strategy for a particular level of communication.

For experiments and practical applications, (1) and (2) are the most impor-
tant issues because they must be solved to allow the construction of operational
systems. Most progress so far has been on these questions. (3) and (4) are par-
ticularly relevant if we want to understand an evolutionary or developmental
scenario for how humans could have evolved the capacity for language and how
artificial agents might emulate this.

10.1.2 Capacities and Inventories

Before introducing the different stages, it is useful to make a distinction between:

1. The capacity for language (also known as the architecture of the language
faculty), which is the set of cognitive mechanisms that agents need in order
to enter and participate in a language community. A mechanism could for
example be a bi-directional associative memory to be used for storing and
retrieving words making up a lexicon.

1 The distinction between (1), (2) and (3) was first introduced by David Marr in the
domain of vision (Marr, 1982)
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2. The language inventory of an individual agent or ideolect, which is the body
of knowledge (individual lexicon and grammar) that an agent uses to map
form to meaning and meaning to form. It contains for example a specific
lexicon.

3. The communal language, which is the consensus that has arisen in a particu-
lar population on how to express meanings. This is obviously emergent from
the activities of the individual agents and is not physically stored anywhere.

All of these have undergone change or are undergoing change in the case of
humans and human languages. When we speak about research in the evolution
or development of human language we must therefore make a distinction between
(1) evolution of the capacity for language (ontogenetically and phylogenetically),
(2) development and change of an individual’s inventory throughout life, and (3)
emergence and continuous change of the communal language in a population.
Also in the case of artificial agents, we must accept that there is constant change
at the level of individual agents as they develop and acquire, invent or adapt
their interventories to remain adapted to the tasks and environments in which
they have to operate. This then impacts the change in the communal language
of the group.

With respect to the language inventory and communal language, we will fur-
thermore make a distinction between the concrete elements routinely used in a
language: the lexical items, syntactic and semantic categories, grammatical rules
and constructions, and the meta-level structure of the language (further called
the meta-grammar) which constrains how the language can be expanded. This
meta-grammar captures the sytematicity of the language. For example, a lan-
guage might use cases like nominative, accusative, dative and case markings (as
in German or Latin) for the expression of event-argument structure of verbs, but
it might also use grammatical relations (subject, direct object, indirect object)
with word order and prepositions (as in English), or post-nominal particles (as
in Japanese) for the same purpose. If a certain language has chosen one approach
and a new event needs to be expressed, the grammar should be expanded in the
same ’style’ as is already dominant in the language.

By analogy with ideolect and communal language inventory, we make a dis-
tinction between:

1. The individual meta-grammar which is the meta-grammar of a single indi-
vidual.

2. The communal meta-grammar which is the meta-grammar underlying a com-
munal language.

Some linguists believe that there is a single meta-grammar with a set of ba-
sic principles and parameters that is universally underlying all languages. It is
called Universal Grammar (UG) and assumed to be innate (Chomsky, 1995).
The individual meta-grammar then consists of a particular parameter setting
constraining the general principles of UG in a way compatible with a particular
grammar (Niyogi and Berwick, 1995). Others argue that there are no abso-
lute universal properties but rather universal tendencies in languages, and that
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meta-grammars take shape and evolve in a cultural fashion, just as the gram-
mars themselves, constrained by human cognitive embodiment and the nature of
the task. In that case, there is no universal meta-grammar in which parameters
are to be set for defining the meta-grammar of a particular language.

In addition to linguistic capacities there are also the conceptual capabilities
to produce or interpret the semantic structures expressed by language. These
conceptual capabilities also undergo change and co-evolve with the increased
complexity of the language. In the case of Embodied Communicating Agents
we focus on grounded meanings, i.e. meanings that are anchored in the world
through the sensori-motor embodiment of the agent, and so we have to worry
about how this grounding will take place and how concepts remain adaptive if
the needs of agents or the structure of the environment changes.

Again it is useful to make a distinction between three aspects:

1. The conceptual capacity of the agent, which is the set of cognitive mechanisms
and behaviors that agents need in order to conceptualise semantic structures,
interpret them, or acquire new perceptually grounded categories that can
be used as building blocks for conceptualisation. Such mechanisms could
include, for example, a neural network that performs categorisation based
on a nearest-neighbor comparison against a set of prototypes.

2. The conceptual repertoire of individual agents also known as the agent’s
ontology2. This is the set of categories and conceptualisation strategies that
agents have at their disposal at a particular point in time. It could consist
for example of a set of prototypes implemented as the weights in a network.

3. The conceptual repertoire of the population as a whole. This is the set of
categories that is shared between the different agents in a population and
acts therefore as their common ground. Sharing is a prerequisite for successful
communication although the sharing does not have to be perfect.

. For human beings, each of these aspects undergoes change as well, and not
just during childhood. As new tasks and domains are tackled, new categories or
conceptalisations become relevant and others become obsolete. There is a strong
co-evolution of conceptualisation and language, in the sense that expansion of
the conceptual repertoires pushes the language to lexicalise or grammaticalise
new conceptualisations and at the same time the conventionalised expression
of a conceptualisation helps to spread and maintain it in the population and
helps individuals to align their conceptual repertoires so that they become more
similar (Garrod and Anderson, 1987). These human abilities for forming and
coordinating new conceptualisations is precisely what we must understand and
synthesise in artificial embodied agents, if we want to achieve self-organised
communication systems.

The different aspects to be studied are summarised in the following table:

2 Unfortunately the term ontology as currently used in computer science - and as
used here - is different from the same term in philosophy where it only refers to
what counts as objects (onto is from the Greek ‘to be’).

112



language meaning
architecture linguistic capacity conceptual capacity
repertoire of individual ideolect ontology
repertoire of group language shared ontology

The remainder of the paper first introduces two explanation structures for
explaining how linguistic or conceptual complexity may arise in a population.
Then the notion of language games is introduced as a useful framework in which
to define and study stages in human-like language communication. Next the
proposed stages are discussed in some more detail and pointers are given to the
current state of the art.

10.2 Explaining the origins of Linguistic or Conceptual
Structure

Broadly speaking, the field of language evolution is exploring two approaches for
explaining the origins and evolution of complexity for each of these aspects: a
sociobiological and a sociocultural approach. Each approach is applicable for ex-
plaining the origins of specific conventions of a language, the linguistic strategies
that agents use for establishing conventions (the meta-grammar), the ontologies
that are available for conceptualising meanings expressable in the language, and
the transitions from one stage to another. Even for the architecture of the lan-
guage and conceptual faculty, both approaches can in principle be applied. Of
course various mixed approaches are available, where some parts are assumed to
evolve in a sociobiological way and others in a sociocultural way.

10.2.1 Sociobiological explanations

The first approach has been pioneered by Hurford (Hurford, 1989), who intro-
duced the term sociobiological. In line with other nativist trends in linguistics
(Pinker, 1994), a sociobiological explanation relies on genetic coding and natural
selection, and is hence closely related to approaches advocated by evolutionary
psychologists (Barkow et al., 1992). We paraphrase Hurford (o.c., p.194):

1. Individuals who are more successful communicators enjoy a selective ad-
vantage and are more likely to reproduce than individuals who are worse
communicators.

2. If an innate strategy X for communication is superior to other conceivable
strategies, its possessors tend to enjoy a reproductive advantage over others,
thereby increasing the prevalence of this strategy in the next generation.

3. Therefore over an evolutionary timespan, strategy X displaces all rivals, and
ends up being the strategy by which communication systems are naturally
acquired.

The term strategy has to be construed broadly. It can be a strategy for acquiring
the lexicon of a language, the strategy of using a particular word for expressing
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a certain meaning, a strategy for using a certain grammatical construction, a
meta-strategy for expanding the grammar of a language in a particular way, etc.

Hurford first applied this line of thinking to investigate the optimal strategy
for the most basic stage of language (later called stage I) in which agents name
individual objects or situations. He shows (further confirmed by (Smith, 2004))
that a Saussurean strategy in which the associations between names and ob-
jects is bi-directional is optimal and hence that this strategy could have become
genetically innate by natural selection.

The same line of argument can and has been applied for other stages in lan-
guage evolution. For example, to explain that a compositional coding becomes
dominant over a holistic coding strategy (later called the transition from Stage
II to Stage III), there could be competition between agents who use a compo-
sitional coding strategy and agents who don’t. Assuming that a compositional
coding strategy results in better communication systems and a reproductive ad-
vantage, the genes coding for such a strategy would then progressively spread
in the population. This argument has been made by (Nowak et al., 2000) (al-
though note that the authors equate syntactic with compositional in this paper).
Similar arguments have also been made for the linguistic meta-conventions or
Universal Grammar (e.g. the available parts of speech or SVO word orders used
in languages) which is assumed to strongly bias the structure of specific human
natural languages (Briscoe, 2005). There are a few researchers who have used
a sociobiological approach for deriving specific lexicons and grammars (Parisi
and Cangelosi, 2002), although there is a wide consensus that, in the case of
human-like communication, these are not genetically coded.

10.2.2 Sociocultural explanations

The second approach is sociocultural (see e.g. (Mufwene, 2001), (Steels et al.,
2002a)). It does not rely on genetic evolution but on two other mechanisms:
(1) cultural evolution, and (2) self-organisation. The explanation structure for
cultural evolution is as follows:

1. Given a population where individuals have several possible strategies for
negotiating and using communication systems.

2. Some strategies might be more effective than others and this impacts the
success that agents have in communication, and/or the effort they require.

3. Agents try to optimize communicative success and effort by choosing the
best strategy, therefore, over a cultural timespan, the more effective strategy
displaces all rivals, and ends up being the strategy by which communication
systems are established and maintained in that specific population.

The main difference between the sociobiological and sociocultural approach to
language evolution is that selection does not go through fitness, reproductive
success, and genetic coding, but through cultural choice and direct feedback on
success or effort in communication.

Again, we can apply this explanation structure at all levels: for specific lex-
icons and grammars, for ontologies, as well as meta-grammars. It can also be
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applied to the architecture of the linguistic or conceptual faculties. As defined
earlier, this architecture is the subset of neural mechanisms that are actually used
by speakers and hearers of a language. In a sociobiological explanation, this sub-
set is assumed to be unique and specialised for language (as in Chomsky’s Innate
Language Acquisition Device). In a sociocultural explanation, individuals come
to the language communication task with a large set of physiological and neurally
embodied cognitive mechanisms, but these mechanisms are not specific to lan-
guage. They include the ability to recognise or reproduce hierarchical structures,
the ability to store, retrieve, and learn bi-directional associations, the ability to
compute analogies between structures, etc. Which ones of these abilities is part
of the language faculty is determined by the kind of language structures the
group has decided to settle on. It is perfectly possible that one group may make
other choices compared to another one. To take an easily observable example:
Some languages (like English) only use sounds produced by exhaling, whereas
others (like the Masai language in Kenya) use not only exhaled but also inhaled
sounds, which requires rather different control skills and is very difficult if you
are not used to it. It is not that English speakers are in principle uncapable
of producing sounds while inhaling (so they have the required physiology and
neural machinery for control) rather they do not exploit it for their language.
Similarly, many australian aboriginal languages (see (Dixon, 1979)) do not use
word order for syntactic purposes relying instead on an elaborate system of mor-
phological markers and agreement, which implies that the cognitive mechanisms
required for parsing or production pay less attention to sequencing compared
to those required for parsing English, which relies almost exclusively on word
order.

But according to the sociocultural approach, cultural selection is only part
of the story because there are many cases in which there are still several possible
choices left, so agents have a true choice, just like a population has a choice
to drive on the left side or on the right side of the road. There is no point in
looking for selection criteria as both solutions would work equally well. Thus, it
is a pure cultural choice whether a pen will be called ”pen” or ”ori” (Japanese
for pen), whether word order is heavily used by the grammar (as in English)
or hardly (as in Australian Aboriginal languages), whether the case system of
the language will use a nominative-accusative distinction (as in German) or
an ergative-absolutive one (as in Basque), etc. And even if there are selection
criteria at stake, languages and their ontologies do not have a unique optimal
solution but are trying to solve multiple constraints which are to some extent in
conflict. For example, a holistic coding is in some sense more efficient because a
complex meaning is conveyed with a single word, however holistic coding requires
a bigger lexicon. So there is a trade-off between introducing the kind of more
complex processing that is required for a compositional coding versus using a
larger memory. So languages, must make choices which criteria to optimise and
these choices could (and have) evolved over time.

Even though there are multiple choices possible on how to set up and main-
tain an effective communication system, it is nevertheless crucial that everybody
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makes the same choice. So a mechanism is needed to explain how a distributed
population can arrive at a consensus without a central coordinator, telepathy,
or innate specification. In the sociobiological approach, consensus is reached be-
cause all agents share the same genes. In a sociocultural approach, consensus
must emerge by a collective decision process. One of the key results from recent
research in the sociocultural evolution of language is that this emergence can
be explained with a mechanism familiar from complex systems science, namely
self-organisation (in the sense of Prigogine (Prigogine and Stengers, 1984)), i.e.
a positive feedback loop is established by coupling use to success so that success-
ful elements get used more and thereby have more success (see (Steels, 1996b)
for one of the first examples). This kind of dynamics is closely related to the
opinion dynamics currently studied in economics (Weisbuch et al., 1994) and its
thorough investigation is a natural target for complex systems methods.

10.2.3 Interactions

There are obvious parallels and interactions between sociobiological and socio-
cultural approaches. The selection criteria that are used in a sociobiological
explanation are relevant to a sociocultural explanation as well, and vice-versa.
It is only the way these criteria are assumed to impact the evolving communi-
cation system that is different. Thus, if a particular style of grammar (say one
exploiting word order instead of morphological markers) is experienced as more
effective by the population, sociobiologists would argue that this style becomes
innate due to the reproductive success agents enjoy, whereas socioculturalists
would argue that it becomes adopted based on a cultural consensus.

Note that in a sociocultural explanation, transitions from one stage of com-
plexity to another have to work without any central agency computing global
properties. The agents have only local information based on their own one-to-one
interactions, and strategy switching has to happen based on such information.
Moreover the different strategies must be able to exist alongside each other and
the winning strategy has to be ’evolutionary stable’ in the sense that if new
agents enter into the population with other strategies they will not be able to
turn back the clock but progressively adopt the strategy already present in the
group. At the same time, strategies may keep shifting in the population under
influence of population change, errors in parsing, production or cognition (Steels
and Kaplan, 1998), or the desire of the agents to explore other parts of the space
of possible languages in order to optimise certain aspects of their language.

Another form of interaction between sociobiological and sociocultural ap-
proaches could arise when there are certain strategies which evolve in a sociocul-
tural fashion but then become genetically engrained due to the Baldwin effect
(Munroe and Cangelosi, 2002).

In the ECAgents project, we are emphasising the sociocultural approach
because this is the most relevant for building artificial Embodied Communicat-
ing Agents with practical utility, but the sociobiological approach is also being
explored. Simply stated, the sociobiological approach has the disadvantage of
requiring many generations of agents before successful shared communication
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systems are established, whereas for concrete applications it is much more desir-
able that a particular population (even if it is changing) is able to self-organise
and maintain a communication system in rapid, cultural time, and that this com-
munication system can adapted quickly to the environments of the agents (see
(Steels and Belpaeme, 2005) for a more extensive argumentation). This does not
imply any claim about the role of sociobiological evolution in the case of human
language. Moreover the sociobiological approach will also be explored.

10.3 The Language Game Framework

Research in other domains of complex systems science has shown the utility of
defining a basic minimal model in which most of the dynamics that we need
to study appear. For example, the prisoner’s dilemma and its iterated variants
have proven to be highly valuable in studying many issues in the evolution of
cooperation. We need to do something similar for the study of language evo-
lution. Earlier research in the synthesis of human-language like communication
(reviewed in (Steels, 1997c)) has shown that language games played by a popu-
lation of agents can play this role.

A language game is a situated interaction between two agents playing the
role of speaker and hearer. It is a cooperative game with no winner or loser.
A language game takes place in a particular environmental setting that acts
as context. The participating agents are randomly drawn from the population
and they take turns being speaker and hearer. There can be a change in the
population, with new agents coming in and others leaving, but this is optional.
It should be possible to see a communication system emerge even in the absence
of population change.

There are obviously many different language games that humans play. The
game that has proven very fruitful and is particularly interesting for artificial
agents is concerned with reference, and is called the Guessing Game (Steels,
1996b). The speaker identifies an object or aspect of the world (this could also
be an action or a state of affairs), and the hearer has to guess which object
the speaker has chosen on the basis of verbal information. When the game fails,
speaker and hearer can still try to repair the communication based on non-
verbal interaction such as through pointing, and this can then be the basis for
expanding or aligning parts of their linguistic and conceptual inventories. Other
games that have been studied are the Description Game, in which one agent
simply describes a scene to another agent, or an Action Game in which one
agent asks another agent to do something in the world (Steels et al., 2002b).
The rest of this paper focuses exclusively on the Guessing Game, which has so
far been studied the most. Other language games typically involve some kind of
reference so the Guessing Game in in some sense primary.

10.3.1 Components of Guessing Games

The many investigations that have already been carried out over the past decade
(beginning with (Steels, 1996c) have shown that the generation and adaptation of
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a repertoire of categories for conceptualisation can fruitfully be studied through
discrimination games, in which an agent selects an object as topic and tries to
come up with a discriminating description that applies to the object but not for
anyone of the other objects in the context, and interpretation games, where an
agent applies a discriminating description to filter the objects in the context in
order to make an educated guess about the topic chosen by the speaker. When the
ontology of the agent, i.e. the repertoire of available distinctions, is insufficient,
agents use a ‘meaning pump’ to generate new distinctions. For example, a new
prototype is introduced and committed to memory.

The production and recognition of sentences is studied through coding games,
in which the speaker attempts to code meaning into a sentence using a language
inventory made up of words or grammatical constructions, and decoding games,
in which the hearer decodes a sentence using his own language inventory in
order to reconstruct the intended meaning. When the inventory of available
form-meaning pairs is insufficient or uncoordinated, the agents use invention or
learning to expand their language inventories or adapt them to that of others.

Guessing games combine these two types of games (see figure 1): The speaker
chooses a topic from the set of objects in the context and then plays a discrimi-
nation game to find a possible distinctive description that can act as the meaning
of the sentence. The speaker then plays a coding game to construct a sentence.
The hearer plays a decoding game to reconstruct the intended meaning from the
sentence and then an interpretation game to make a guesss about the possible
topic. A language game succeeds if the topic guessed by the hearer is equal to
the topic chosen by the speaker.

Fig. 1. A guessing game combines discrimination and interpretation games with
coding and decoding games

All these steps have been called games (following a Wittgensteinian tradition)
because there is clear success and failure and agents try to get better in the game.
On the other hand, they are not adversary but cooperative games and so the
techniques of game theory may be not so relevant.
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10.3.2 Formal Definitions

Let there be a population of agents A = {a1, ...an}. The state of an agent a at
time t is defined as at = 〈Ia,t,Ka,t〉 where Ia,t is the language inventory known
by the agent at time t and Ka,t is the conceptual repertoire (ontology) of the
agent. Sa,t is the set of all possible sentences which can be constructed using the
agent’s language inventory Ia,t and Ma,t is the set of possible meanings that
can be constructed from Ka,t. Let M be the expressed or parsed meaning and S
a sentence that expresses M.

Assume a set of objects in the domain of discourse O = {o1, ..., on} and a
context C ⊆ O. Let the topic ta be an object or a set of objects chosen by agent
a among the objects in the context.

A discrimination game DG played by an agent a at time t is defined as a
tuple:

DGa,t = 〈ta, C,Ma〉

where

– ta ∈ C is the topic,
– C is the context,
– Ma ∈Ma,t+1 is a meaning M which is distinctive for ta, or ∅ if no distinctive

meaning can be found. A meaning M is distinctive for a topic ta in a context
C iff M , possibly instantiated with a unique set of variable bindings, is true
for ta and for no other object in C.

The ontology of the agent, and hence the set of meanings, may change as a side
effect of the game: Ka,t is the ontology available at the beginning of the game,
and Ka,t+1 the ontology at time t + 1.

The score of a discrimination game score(DGa,t) is 1 (success) iff Ma 6= ∅,
otherwise it is 0.

An interpretation game IG played by an agent a at time t is defined as a
tuple:

IGa,t = 〈Ma, C, ta〉

where

– Ma ∈Ma,t is a possible meaning,
– C is a context,
– ta ∈ C is the unique topic ta wuch that Ma is distinctive for this topic in the

context C. If there is no such topic the result of the game is ∅, the empty
object.

The ontology of the agent, and hence the set of meanings, may change as a side
effect of the game: Ka,t is the ontology available at the beginning of the game,
and Ka,t+1 the ontology at time t + 1.

The score of an interpretation game score(IGa,t) is 1 (success) iff ta 6= ∅,
otherwise it is 0. Note that the game is also a failure if there is more than one
possible topic for the given context.

A Coding Game COG played by an agent a at time t is defined as:
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COGa,t = 〈Ma, σ〉

where

– Ma ∈Ma,t is a possible meaning and
– σ ∈ Sa,t+1 is a possible sentence in the case of success, or ∅ (the empty

sentence) in the case of failure.

The language inventory of the agent may change as a side effect of the game:
Ia,t is the language inventory available to the agent at the start of the game,
and Ia,t+1 the language inventory of a at time t + 1.

The score obtained in a coding game code(COGa,t) is 1 (success), iff σ 6= ∅,
otherwise it is 0.

A Decoding Game DEG played by an agent a at time t is defined as:

DEGa,t = 〈σ,Ma〉

where

– σ ∈ Sa,t+1 is a sentence constructable from the agent’s language inventory,
– Ma ∈ Ma,t is a possible meaning in the case of success, or ∅ (the empty

description) in the case of failure.

The language inventory of the agent may change as a side effect of the game:
Ia,t is the language inventory available to the agent at the start of the game,
and Ia,t+1 the language inventory of a at time t + 1.

The score obtained in a decoding game score(DEGa,t) is 1 (success), iff
o 6= ∅, otherwise it is 0.

A Guessing Game (GG) is a combination of all games defined in this section.
Assume two agents randomly chosen from the population: a speaker s ∈ A and a
hearer h ∈ A where s 6= h. Then a Guessing Game GG played at time t between
s and h is defined as

GGs,h,t = 〈C, ts, σ, th〉,

where

– C ⊆ O is a context,
– ts ∈ C is a topic chosen by the speaker,
– σ is a sentence,
– th ∈ C is a topic guessed by the hearer.

A Guessing Game GGs,h,t decomposes into the following games as defined
in this section:

DGs,t = 〈ts, C,Ms〉, COGs,t = 〈Ms, σ〉
DEGh,t = 〈σ,Mh〉, IGh,t = 〈Mh, C, th〉
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The score of a Guessing Game score(GG) is 1 (success) if ts = th, otherwise
it is 0. Note that the meanings used by the speaker and the hearer, do not
necessarily have to be equal in order to be successful in the game. At the end
of the game, the ontologies and inventories of both participating agents may be
further updated based on the outcome of the guessing game.

The minimal goal of the agents is to maximise their cumulative score in
consecutive guessing games but there could be additional goals to optimise var-
ious aspects of this system, for example, the size of a sentence, the size of the
inventory, the amount of polysemy or synonymy, etc.

Initially the agents have no inventory at all: ∀a, Ia = ∅ and inventories must
be expanded as a side effect of the coding and decoding game to maximise
communicative success. Moreover the agents have no ontology either: ∀a,Ka = ∅
and they must develop their ontologies as a side effect of discrimination and
interpretation games. Of course it is already useful to do experiments where
the ontology is fixed and given, but then the issue of the co-evolution between
language and meaning cannot be addressed.

10.3.3 A Remark on Objects

The present formalisation makes a short-cut with respect to the objects in the
domain. It would be more accurate to make a distinction between the set of
objects in reality Or and the set of objects as perceived by the speaker Os or the
hearer Oh. It is well known in real world robotics that object or event recognition
is extraordinarily difficult and may not yield the same results due to different
spatial positions of speaker and hearer, differences in light conditions, different
expectations, etc. Moreover feedback on success in the game (whether ts = th)
is not so obvious either and usually has to go through real world actions. For
example, the speaker may name an object in order to obtain it and the hearer
then gives the desired object or not. Often feedback is of course much less direct
and success or failure may only become apparent much later. These problems are
not considered here, but are of extreme importance for embodied agents playing
grounded language games. This paper assumes that Os = Oh and that agents
are able to signal extra-linguistically that ts = th.

10.3.4 Interaction Protocols

To play a guessing game, agents need to engage in a particular turn-taking
action. The implementation of these actions on real world embodied agents is
far from trivial (see [section by hafner and kaplan]) but here we assume that is
developed earlier or programmed directly as explicit scaffolding.

The following steps are undertaken by the agents in the case of a successful
Guessing Game. The context is set by the environment. The left column contains
actions by the speaker and the right column actions by the hearer. The ‘success’
and pointing signals are based on non-verbal communication.
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context C
1. Speaker chooses ts ∈ C
2. Speaker conceptualises

ts as Ms

3. Speaker codes Ms as σ
−→ σ −→

1. Hearer decodes σ as Mh

2. Hearer interprets Mh as th
3. Hearer points to th

← pointing ←
4. Speaker compares to ts

→success→
5. Speaker updates Ks,t+1 4. Hearer updates Kh,t+1

6. Speaker updates Is,t+1 5. Hearer updates Ih,t+1

In the case of failure, the speaker can point to the topic to give the opportu-
nity to the hearer to reconstruct a distinctive description that might have been
the possible meaning of the sentence:

context C
1. Speaker chooses ts ∈ C
2. Speaker conceptualises

ts as Ms

3. Speaker codes Ms as σ
−→ σ −→

1. Hearer decodes σ as Mh

2. Hearer interprets Mh as th
3. Hearer points to th

← pointing ←
4. Speaker compares to ts

→ failure →
5. Speaker points to ts

→ pointing →
6. Speaker updates Ks,t+1 4. Hearer conceptualises ts as Mh

(which may expand Kh,t+1)
7. Speaker updates Is,t+1 5. Hearer updates Ih,t+1

10.4 Overview

We are now ready to briefly discuss the proposed stages. Before discussing each
stage, here is a table presenting for each stage the nature of the meaning to be
expressed, the type of form used, and the major issue whose origins needs to be
explained.
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Stage Meaning Form Issue
I Individuals (proper) Names Convergence on convention
II Single Categories Single Words Co-evo language/meaning
III Multiple Categories Multiple Words Compositionality
IV Multiple Objects + Predicates Grammar Origins of grammar
IVa id. Syntax Exploitation of syntax
IVb id. Grammar Intermediary layers
IVc id. Recursion Hierarchical re-use
IVd id. Meta-grammar Two-level evolution
V Second Order predicates Grammar Second order
VI Meta-level Grammar Level formation

10.5 Stage I: Names

The first stage is obviously the simplest one. It associates a name with an in-
dividual object. This is still very close to animal communication systems, such
as alarm calls of vervet monkeys, which also associate a signal with a particular
situation. Here we are of course looking at open-ended culturally negotiated as
opposed to genetically evolved systems, where the set of objects and hence the
set of names may always be extended. The big issue at this stage is how agents
can establish a shared set of linguistic conventions without a central supervisor
or without telepathy.

Definition: In Stage I, M consists of an individual object and S a single
word naming this object. This corresponds to proper names in natural
language, like ”John”. The language game at this stage is also known as
the Naming Game.

To reach this stage, agents must first of all be able to identify individual
objects or situations. Although object recognition in itself very difficult, it can
be achieved fairly reliably in restricted conditions so that concrete experiments
can be made. Next, agents must be able to maintain a two-way associative
memory, associating objects with names, so that they can lookup the name
corresponding to an object (in coding), or the object corresponding to a name (in
decoding). Because different names for the same object may be floating around in
the population (synonymy) and different objects for the same name (homonymy),
the memory of each agent will have to store several name-object associations
each with a particular strength, reflecting the success of a particular association.
Agents should then choose the association with the highest strength both for
coding and decoding.

There are three types of functions that agents need to build up and maintain
these associative memories:

invention. When a new name is needed, the speaker generates a new word from
scratch and associates that in his memory with the object he needs to name.
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Adoption. When the hearer encounters a new name, he also associates it in his
memory with the object pointed at by the speaker.

Alignment. Agents update the strength of their association based on success in
the game. When a particular association was successful, its strength is increased
and that of competitors decreased. When an association was not successful its
strength is decreased. This implements a reinforcement learning approach with
lateral inhibition.

These three types of functions reoccur as fundamental primitives for estab-
lishing communication systems at every stage.

There is already a well-established literature on the Naming Game ((Steels,
1996b), (Oliphant, 1997)) and many computer simulations have shown beyond
doubt that the lateral inhibition dynamics is effective (see for example figure 2
from (Steels and McIntyre, 1999)). Although the cognitive architecture of agents
at this stage appears relatively straightforward, it is far from trivial to show in
a theoretical way that a shared vocabulary emerges in the population given a
particular set of microscopic behaviors. Progress is being made using techniques
from complex systems science but theoretical proofs are still forthcoming. The
question is similar to multi-agent decision problems in economics (for example
the opinion dynamics discussed in (Weisbuch et al., 1994)) or more generally,
the emergence of global coordinated state based on local interactions as studied
in statistical physics.

Fig. 2. The graph plots the frequence with which a certain word is used for
expressing a particular meaning. There is a winner-take-all effect due to self-
organisation.
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Many of the computational components listed above can be easily translated
into neural networks. For example, agents could use a classical feed forward
neural network with a winner-take-all strategy for object recognition (for the
discrimination game). New objects could be learned by adapting the weights
in such a network, possibly based on supervised learning with feedback signals
coming from other cognitive processes. the weights interpretation game is more
difficult to implement in a neural network style. It requires a solution to the
binding problem (von der Malsburg, 2003), because the network must be able
to compare different objects in the context, each having their own features. The
system must also test whether the object that has the highest activation based
on object identification is the same as the object that was named by the hearer.

The associative memory for the lexicon is also relatively easy to implement in
neural networks, for example using a bidirectional associative memory ((Kosko,
1988)) which is itself an extension of the Hopfield network. The strength of
associations is then implemented as weights of relations in the network and a
winner-take-all process decides which name to use for a given object and which
object to use for a given name. Instead of using only Hebbian learning, lateral
inhibition has to be added as pioneered in Kohonen networks. It is less obvious
how a neural network implementation could invent new names when needed.
Moreover the network will have to grow new nodes for new names and new
objects, otherwise we have to artificially limit the number of possible names and
possible objects. Another question is how the network could handle very large
lexicons (at least thousands if not tens of thousands of words).

To build a complete agent in a neural network style requires furthermore
that the networks for identification of individual objects are coupled to those
that associate names and vice-versa, and that the turn-taking behavior is also
implemented in a neural way. Even though such a complete agent has never been
built, it is presumably within the state of the art in neural network research to
do so.

The next interesting question is under what circumstances a communication
system as required for the Naming Game could arise, and particularly how the
agents would zoom in on the most efficient way to play such a game. Important
work in this area was first done by (Hurford, 1989) who showed that agents
endowed with a ’Saussurian strategy’, i.e. with a bidirectional mapping between
name and object as opposed to separate mappings, gives better results in com-
munication and hence such agents will dominate after a while the population.
More recent work along the same line has been carried out by (Smith, 2004),
including experiments in which there is an attempt (so far not completely suc-
cessful) to genetically evolve a population with a Saussurean strategy. Hurford,
et.al. assumed a sociobiological framework but similar results could in principle
be obtained in a cultural framework in which agents choose among a variety
of possible strategies strategies which ones optimises success in communication
while minimising effort, but concrete experiments remain to be done. Some spec-
ulation how the brain might have evolved to achieve communication systems at
this stage are discussed in (Deacon, 1997a).
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To summarise, we can say that (1) the required cognitive functions at stage
I are well identified, (2) computational theories exist how to achieve them, (3)
a plausible neural embodiment of this computational theory appears feasible,
although it has not yet been studied very much, and (4) there has been some
work on how a particular strategy for playing the naming game can become
dominant in a population.

10.6 Stage II. Single Category

In the next stage, the coding/decoding behaviors remain the same but instead
of naming individual objects, the agents express categories. At Stage II only sin-
gle categories and single words are assumed. Some researchers have argued that
these categories are innate, i.e. evolved through sociobiological evolution, how-
ever they have also been shown to be evolvable through sociocultural evolution
as a side effect of playing discrimination and interpretation game. Perceptually
grounded categorisations are constrained by embodiment and environment but
there is usually still room for choice so that consensus which categorisations to
use for language becomes again a cultural issue. This stage raises therefore the
important issue of the co-evolution of a categorial repertoire (ontology) and a
lexicon: How can the emerging lexicon have an influence on what categories arise
in the group and how can the categories help shape the lexicon.

Definition: In Stage II, M consists of a single category that identifies
an individual object in a particular context. S names this category. This
corresponds to words like “table” or “red”, if used in a context where
there is only one table or one red object.

To reach this stage, agents must be able to categorise the objects in the
context to find a discriminative category, to identify an object in a context
based on a distinctive category, and to build up a repertoire of such categories,
adequate for playing discrimination and interpretation games. Next, agents must
be able to maintain a two-way associative memory similar to Stage I. Instead of
associating names to objects, agents now associate words to categories. There
must also be an appropriate coupling between the games such that there is
not only a progressive alignment of the lexicons of the agents but also of their
ontologies.

Computational mechanisms capable to achieve these functions have been
demonstrated and studied since the mid-nineties. Many possible ways exist to im-
plement category formation for discrimination and interpretation, ranging from
neural network (e.g. using radial basis function networks (Steels and Belpaeme,
2005)) to symbolic approaches (e.g. discrimination trees (Steels, 1996a) or pro-
totypes (Steels and Vogt, 1997a)). It has also been demonstrated that output
of discrimination can be fed into coding processes of the same sort as used in
the Naming Game (Stage I) and that the same sort of decoding processes as
in Stage I are adequate to interact well with interpretation. Moreover by the
proper coupling of the two games (which is done by using the result of the total
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game to align both the linguistic and conceptual inventories of the agents), it
has been shown that agents are able to reach a coordinated repertoire of percep-
tually grounded categories even if these categories were not given innately nor
centrally coordinated. The only coordination has taken place through language
(see figure 3 taken from (Steels and Belpaeme, 2005)). So implementing complete
Guessing Games for Stage II using standard computational techniques is at the
moment a well mastered technology and can already be the basis of non-trivial
applications.

Fig. 3. The graph plots the cumulative category variance between the ontologies
in a population of agents with and without language. Agents play discrimination
and interpretation games and construct an ontology as a side effect. When there
is no coordination through language, the ontologies do not converge, otherwise
they do.

Although nobody has already built a complete neural network based agent,
this is presumable feasible in principle given the current state of the art in neural
network research. As for Stage I, certain parts of the required mechanisms fall
easily within the domain of known neural network architectures. For example,
categorisation can be done with simple feed-forward networks and the same bi-
directional associative memory could be used as for Stage I. On the other hand
implementing supporting processes (e.g. for the construction of new names for
interpreting a category to pick out an object from the context, etc.) is more
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difficult and requires an adequate solution to the binding problem. Less work
has so far been done on how an optimal set of strategies for playing language
games at this stage could evolve or be culturally chosen by agents.

To summarise, we can say that (1) the required cognitive functions at stage
II are well identified, (2) computational theories exist how to achieve them, (3)
a plausible neural embodiment of this computational theory appears feasible,
although it has not yet been studied very much, and (4) little work has been
done on the evolution of the language faculty needed to play guessing games at
this stage.

10.7 Stage III. Multiple Categories

The next stage is triggered by a need to express multiple categories. Multiple
categories arise when the domain has sufficient structure so that categorisation in
multiple conceptual spaces is more efficient than categorisation in a single space.
For example, rather than having a single conceptual space where colour, size,
shape, etc. are the possible dimensions, there are now different spaces so that
there are potentially different categories like red/green, small/large, box/ball,
etc. The need to express multiple categories introduces the potential for using
multiple words, and thus a compositional coding, but that is not necessarily so.
It is also possible to use the same strategy as in stage II and use a holistic coding.
For example, a single word to express the category combination ’red large box’
could be chosen as opposed to three different words. The big issue at this stage
is therefore how compositional coding could become the dominating strategy.

TheDefinition: In Stage III, M consists of multiple categories that con-
junctively identify an object, as in “red box”. S may consist of multiple
words (but still without syntax).

The need for expressing multiple categories has triggered research into the
multi-word guessing game (Looveren, 2001) which is in fact only a minor vari-
ation of the single-word guessing game at stage II. The cognitive functions and
computational mechanisms that are required are well understood. A number of
researchers have tried out sociobiological approaches to explain how a composi-
tional coding might become genetically dominant in a group based on a direct
coupling of certain communication criteria and reproductive success (Nowak and
Krakauer, 1999), (Nowak et al., 2000) (although they unfortunately equate com-
positional coding with syntax). Some research has also been conducted in how
the compositional strategy may become preferred over a holistic strategy in a
cultural selection process. There has been further research on the impact of the
learning bottleneck on the emergence and cultural transmission of a communi-
cation system that uses compositional coding (Kirby, 1999a).

10.8 Stage IV. Multiple Objects.

Stage IV is triggered as soon as multiple objects or relations between objects
need to be expressed. It then becomes necessary to introduce some form of syntax
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or grammar. For example, “red ball under small box”, translates to the following
predicate-calculus expression (with question marks before the variables):

red(?x), ball(?y), under(?a,?b), small(?c), box(?d)

Semantic interpretation means to find bindings for the variables involved. A
lexical language does not communicate the equalities between the variables, and
so the hearer cannot know that “red” and “ball” are about the same object (i.e.
that ?x = ?y), that “small” and “box” about another one (i.e. that ?c = ?d),
and that the ball is under the box and not the box under the ball (i.e. that ?x =
?a and ?b = ?c. By conveying this additional information through syntax, the
speaker not only avoids misinterpretations but also reduces the computational
complexity of the semantic interpretation process which is exponential w.r.t. the
number of variables.

Definition: M consists of multiple categories and multiple objects which
conjunctively identify an object. We now need the power of logic-style
predicate-argument structure for M. S necessarily contains syntactic el-
ements to specify constraints beyond individual words.

It is useful to identify four substages which each lead to increased grammat-
ical systematicity.

10.8.1 Substage IVa. Syntax.

The first way to link different lexical items and their meanings is by introducing
some form of syntactic structure such as word order.

Definition: In substage IVa, syntactic patterns, such as word order, are
used for the linking of individual words, but these patterns are completely
ad hoc for expressing constraints on a particular meaning configuration.
For example, the combination of ”red (?x), ball(?x)” could be ”red ball”
but that of ”blue” and ”ball” could be ”ball blue”.

This stage is comparable to programming languages which use syntactic
structure to specify the arguments of procedures and functions but do not have
any further systematicity. For example, a procedure

DrawWindow(Window,lefttopX,lefttopY,rightbottomX,rightbottomY,Color)

can be called by giving specific arguments, as in:

DrawWindow(¡window-5146¿,5, 10, 7, 8, ’red’)

But another procedure, say for MoveWindow might be written with its argu-
ments in a quite different ordering:

MoveWindow(lefttopY,Window,lefttopX)

129



There is no reason to use the same sort of argument structure (for example
the window is always the first argument, the X-coordinate is given before the
Y-coordinate, X and Y of the same point are always next to each other, etc.)
except if the programmer so desires.

The introduction of syntax already is a very significant step beyond the lexi-
cal languages studied in stage I to III. In order to achieve this level, agents need
considerably more complex cognitive functions: They need to be able to detect
the need for the introduction of syntax or be able to interpret a sentence even
if no syntactic information is available or it is unknown what this information
indicates. They need to be able to recognise and reproduce the syntactic struc-
tures that are used in a particular language, such as word order or intonation
patterns. They need to be able to invent syntactic rules or adopt these rules from
others. The same dynamics as in stage I-III is required to align the different con-
ventions that agents invent, so that the population converges on a shared set
of syntactic conventions. At the moment we have already many computational
models that are able to handle these capabilities and they rely extensively on
the state of the art in computational linguistics. However, implementing these
computational mechanisms in a realistic neural embodiment is so far beyond the
current state of the art in research. There are various types of networks (such
as recurrent neural networks (Elman, 1990)) which are able to learn syntactic
patterns and could therefore be used as foundation.

10.8.2 Stage IVb. Grammatical constructions.

At the next stage, a real natural language like grammar emerges. By this, we
mean that there is now an intermediary layer of syntactic and semantic categories
intervening between the form and the meaning, so that the mapping can take
place at a more abstract level and that the resulting language becomes much
more regular in structure.

Definition: In substage IVb, a layer of abstract syntactic and semantic
categories arises between the meanings M and the sentence S, so that
the form-meaning mappings can become more abstract and hence more
systemic.

To reach this stage, agents need first of all to build up and maintain a large set
of internal linguistic categories, both syntactic and semantic categories. Exam-
ples of syntactic categories are noun, verb, nominative, masculine, past perfect.
They may be syntactically marked with word order, affixes, intonation, etc. And
are used to define or recognise syntactic patterns like SVO. Examples of seman-
tic categories are agent, beneficiary, source, cause-transfer, state, etc. They are
used to define or recognise semantic frames which reconceptualise meanings in a
way that they fit within a particular language. Grammatical constructions then
link semantic frames to syntactic patterns. A typical example of a construction
is the Cause-transfer which links a semantic frame involving an agent, patient
and target to a syntactic SVOtoO pattern (subject-verb-directobject-to-object,)
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(Goldberg, 1995) (see figure 4). A specific verb, like slides, is an instantiation of
this construction.

Fig. 4. A construction relates a syntactic pattern such as Sub-
ject+Predicate+DirectObject+PrepObject with a semantic frame such as
TRANSFER-TO-TARGET+Agent+Patient+Target.

At the moment there is growing research into the computational implemen-
tation of construction grammars (ber), (Bryant), (Steels, 2004) based on the
state of the art in computational linguistics. Unification-based grammars ap-
pear to be the most appropriate formalism but there are many technical ques-
tions to make it as flexible as possible, allowing bi-directionality and partial
parsing/production. Also the literature on the acquisition and invention of con-
structions is growing (Chang and Maia, 2001) (Steels, 2004) strongly inspired by
research on child language acquisition (Tomasello, 2000) and research in gram-
maticalisation phenomena (Heine, 1997). The same dynamics as discussed in
earlier stages must again be implemented, i.e. the lateral inhibition dynamics so
that conventions that are successful increase their spread in the population and
those that are not culturally accepted die out.

To implement the necessary computational functions in a neurally realistic
way appears at the moment quite beyond the state of the art. For example, it
is necessary to implement processes that are capable to match complex struc-
tures against each other, to realise partial parsing and production using tens of
thousands of cascading rules, to introduce new internal syntactic and seman-
tic categories, etc. At this moment there is still an enormous amount of work
left before large-scale computational simulations of the (cultural) evolution of
grammar can be set up and this appears a prerequisite before we can turn to
neural models. The computational work is also a prerequisite for investigating
how there might be a transition from a stage where there is only syntax to one
where grammar gets progressively introduced and maintained in the population.

10.8.3 Stage IVc. Recursion.

Natural languages exhibit a further powerful property, namely recursion, and
it is useful to postulate a substage in which the grammatical language starts
exploiting recursion.
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Definition: In substage IVc, the building blocks that have emerged
within the intermediary layer may become themselves embedded in units
of the same type. For example, a noun phrase may itself contain a noun
phrase.

This stage requires that the computational mechanisms used for parsing and
production become more complex and also the invention, adoption and alignment
processes can handle recursive structures. This appears to require only minor
extensions to the formalisms required at stage IVa and IVb but research in this
area is still wide open at the moment.

10.8.4 Stage IVd. Meta-grammar.

We have earlier on made a distinction between the ideolect and communal lan-
guage, i.e. the specific repertoires of words and grammatical constructions used
by the individual or the population respectively, and the meta-grammar which
enables individuals to expand their own ideolects and hence the communal lan-
guage. It is clear that this meta-grammar also can undergo change in the individ-
ual and the group and so we need to postulate a level where this meta-grammar
arises and changes.

Definition: The principles that are used for inventing or acquiring gram-
mar become themselves subject to convention, which requires that agents
not only have representations of grammars but also of meta-grammars.
Hence the systematicity in the language can be dramatically increased.

This stage requires that there is evolution at two different levels: the level of
the grammar and the level of meta-grammar which specifies how the grammar
has to be expanded. It has obviously significant implications for the computa-
tional mechanisms that need to be available as well as the invention and adoption
operators. Although significant work has already been done within the framework
of sociobiological evolution based on the notion of principles and parameters (see
e.g. (Niyogi and Berwick, 1995)) much work remains to be done, particularly in
the context of sociocultural evolution. It is to be expected that from a com-
putational point of view we need a meta-level architecture and computational
reflection.

10.9 Stage V. Second order predicates.

Stage V is triggered when the need arises to include predicates that modify other
predicates, i.e. second order (or even higher order) predicates. For example the
adverb “very” in “very big ball” is modifying the category expressed by the
adjective “big”. It is not a predicate that ranges over objects in the domain of
discourse directly. The known arsenal of logical operators, quantifiers and con-
nectives now becomes part of the expressive power of possible semantic struc-
tures. This higher order usage of predicates clearly needs to be communicated
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explicitly and is a second reason why grammar becomes crucial and necessary
in natural languages.

Definition: M contains categories which operate over other categories.
S requires additional grammatical devices to express the higher order
use of categories.

Although there is significant amount of research in (logical) semantics and
linguistics beyond first order logic (see e.g. research into Montague Grammar
(Partee, 2003)) there are so far no convincing computational theories how such
second order predicates could arise nor how the grammar could arise to express
them. There are also no neural network models nor any scenarios on how specific
cognitive strategies could be selected for.

10.10 Stage VI. Meta-level.

The final stage is triggered when it becomes possible that the objects of discourse
are themselves elements of the language, for example, when it becomes possible
to express ”red is the name of a colour”. At this point the language becomes
its own meta-language and conventions can be explicitly negotiated as opposed
to implicitly learned. This can then lead to a very rapid increase in the transfer
and coordination of language inventories as well as the conceptual repertoires
underlying language.

Definition: The language becomes its own metalanguage: The objects
of the domain include elements of the language itself. Additional gram-
matical structure is introduced to make this possible.

There has already been quite a bit of research on computational and logical
meta-level representations and reflection (mostly in the seventies) so from a
meaning point of view, there are many ideas on how conceptualisations processes
could make use of a meta-level. On the other hand, there has so far been no
research, as far as we know, within the context of language evolution research
on how grammatical structures could arise that support meta-level expressions.
So all the challenges remain open for this stage.

10.11 Conclusions

This paper introduced a number of stages for studying the evolution of language
and meaning in artificial Embodied Communicating Agents. Each stage is char-
acterised by a particular level of complexity at the meaning side and a particular
level of complexity at the form side. Each stage also requires an increased set
of more complex strategies for playing discrimination and interpretation games,
including the formation of the ontologies required to play those games, as well
as more powerful strategies for communicating these meanings in coding and
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decoding. The transition between stages is possible based on sociobiological or
sociocultural processes or a combination of the two.

The table below lists the state of the art for each stage, with respect to the
four questions listed earlier: (1) identification of required cognitive functions,
(2) computational theory to achieve these functions, (3) neural implementation,
and (4) understanding of the transitions between stages. 1 means that adequate
proposals exist. 0 means that no significant results are known at this point, and
- means that there have been encouraging ideas and experiments but no firm
conclusive results yet.

Stage Functions Computational Neural Transition
Stage I 1 1 - -
Stage II 1 1 - -
Stage III 1 1 - -
Stage IV
Stage IVa 1 1 0 0
Stage IVb 1 1 0 0
Stage IVc 0 0 0 0
Stage IVd 0 0 0 0
Stage V 0 0 0 0
Stage VI 0 0 0 0

The lack of neural models, even if there is a known computational theory, is
not surprising. Language processing requires a number of basic processes that
are beyond the current state of the art in neural network research. We will
need efficient working solutions to the binding problem and to the matching
of complex symbolic structures before realistic models of language processing
can be tackled. Fortunately for building real world applications of embodied
communicating agents neural network implementations are not required.
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Neurobiological Challenges

Eors Szathmary, Gergo Orban, Mate Lengyel, Zoltan Szatmary, and Peter
Ittzes

Collegium Budapest

11.1 Introduction

Natural language is a unique communication and cultural inheritance system.
In its practically unlimited hereditary potential it is similar to the genetic and
the immune systems. The underlying principle is also similar in that all these
systems are generative: they achieve unlimited capacity by the combination of
limited primitives.

The origin of natural language is the last of the major evolutionary tran-
sitions (Maynard-Smith and Szathmary, 1997). Although later in society im-
portant transitions did happen in the way of storing, transmitting and using
inherited information, they were not made possible or accompanied by relevant
genetic changes in the biology of our species. In contrast, language has a genetic
background, but it is an open question how a set of genes affect our language
faculty. It is fair to say that with respect to their capacity to deal with the com-
plexity of language, even so-called ‘linguistically trained’ animals are very far
from us.

Language has certain design features, such as symbolic reference, composi-
tionality and recursion, and cultural transmission (Hockett, 1960b). Understand-
ing language origins and change is difficult because it involves three interwoven
timescales and processes: individual learning, cultural transmission and biologi-
cal evolution. These cannot be neatly separated from one another (Christiansen
and Kirby, 2003). The fact that a population uses some useful language in a cul-
turally transmitted way changes the fitness landscape of the population genetic
processes.

The origin of language is an unsolved problem; some have even called it the
‘hardest problem of science’. It is very hard because physiological and genetic
experimentation on humans and even apes is very limited. The uniqueness of
language prohibits, strictly speaking, application of the comparative method, so
infinitely useful in other branches of biology.

This limitation of the approaches calls for other types of investigation. We
believe that simulations of various kinds are indispensable elements of a suc-
cessful research programme. Yet a vast range of computational approaches have
also brought about relatively modest success (Elman et al., 1996). This is at-
tributable, we believe, to the utterly artificial nature of many of the systems
involved, such as connectionist networks using back-propagation, for example
(see Marcus, 1998 for a detailed criticism).



Fig. 1. Faculties that underlie the evolution of language.

The only system we know that has apparently solved the ‘language
problem’ is biological evolution. Therefore, our research project is delib-
erately biomimetic as strongly as it can be, given the limitations prevail-
ing in computability and basic knowledge.

The question then is whether a biomimetic strategy could thus be feasible
which would expose simulated agents to selective challenges in such a way that
communication should possibly arise as a means to enhance the performance
of the agents in synergistic collaborative tasks. The agents must therefore have
simulated evolvable nervous systems (a possible aim is a ‘toy’ cortex, see below),
which are under partial (again biomimetic) genetic control (cf. Chapter 3). If
this research line turns out to be successful, it leads to the evolutionary emer-
gence of communicating agents, possibly endowed with a faculty to master key
components of language such as recursion, symbolicism, compositionality, and
cultural transmission. We now give justification for such an approach based on
a brief survey of our current understanding of the biology of natural language.

Language needs certain prerequisites (Premack, 2004). There are some obvi-
ous prerequisites of language that are not especially relevant to our approach.
For example, apes do not have a descended larynx or cortical control of their
vocalisations. Undoubtedly, these traits must have evolved in the human linage,
but we do not think that they are indispensable for language as such. One could
have a functional language without a smaller number of phonemes, and sign
language (Senghas et al., 2004) does not need either vocalisation or auditory
analysis. Thus, the biomimetic approach shoud be mostly concerned with the
neuronal implementation of linguistic operations, irrespective of the modality.

It seems difficult to imagine the origin of language without capacities for
teaching (which differs from learning), imitation, and some theory of mind
(Premack, 2004). Apes are very limited in all these capacities (Figure 1). It
is fair to assume that these traits have undergone significant evolution because
they were evolving together with language in the hominine lineage.
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We conclude that in any selective scenario, capacities for teaching, imitation
and some theory of mind must be rewarded, because an innate capacity for these
renders language emergence more likely.

On the neurobiological side we must call attention to the fact that some
textbooks (Kandel et al., 2000) still give a simplified image of the neurobiological
basis of language. It would be very simple to have the Wernicke and Broca areas
of the left hemisphere for semantics and syntax, respectively. But the localisation
of language components in the brain is extremely plastic, both between and
within individuals (Neville and Bavelier, 1998; Müller et al.). Surprisingly, if a
removal of the left hemisphere happens early enough, the patient can nearly
completely maintain his/her capacity to acquire language. This is of course in
sharp contrast to the idea of anatomical modularity. It also puts severe limitation
on the idea that it is only the afferent channels that changed in the evolution
of the human brain: modality independence and the enormous brain plasticity
in the localisation of language favour the idea that whatever has changed in
the brain that has rendered it capable of linguistic processing must be a very
widespread pattern of the neuronal networks in the brain (Szathmary, 2001).
Components of language get localised somewhere in any particular brain in the
most ‘convenient’ parts available. Language is just a certain activity pattern of
the brain that finds its habitat like an amoeba in a medium. The metaphor
‘language amoeba’ expresses the plasticity of language but it also calls attention
to the fact that a large part of the human brain is apparently a potential habitat
for it, but no such habitat seems to exist in the ape brains (Szathmary, 2001).
The biomimetic approach offers a test of these ideas.

A dogma about the histological uniformity of homologous brain areas in dif-
ferent primate species has also been around for some time. Recent investigations
do not support such a claim (DeFelipe et al., 2002). In fact the primary visual
cortex shows marked cytoarchitectonic variation (Preuss, 2000), even between
chimps and man (Fig. 1). It is therefore not at all excluded that some of the
species-specific differences in brain networks are genetically determined, and that
some of them are crucial for our language capacity. But, as discussed above, these
language-critical features must be a rather widespread network property.

A key feature of brain development is that there is something akin to selec-
tion in populations going on (Changeux, 1983): there is a vast overproduction
of synapses and neurons, out of which at least half are eliminated under sensory
influence (Fig. 2). We suspect that it is practically impossible to obtain a lin-
guistically proficient neuronal network without pruning (Jeffery and Reid, 1997;
Johnston, 2001). This is a testable prediction of the biomimetic approach. Prun-
ing does not merely mean that some of the connection weights are set to zero:
it also means that they remain zero for the rest of the lifetime of the network.

Genes affect language through the development of the brain. One could thus
say that the origin of language is to a large extent an exercise in the linguistically
relevant developmental genetics of the human brain (Szathmary, 2001).

The close genetic similarity between humans and chimps strongly suggests
that the majority of changes relevant to the human condition are likely to have
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Fig. 2.

resulted from changes in gene regulation rather than from widespread changes of
downstream structural genes. Recent genetic and genomic evidence corroborates
this view. In contrast to other organs, genes expressed in the human brain seem
almost always up-regulated relative to the homologous genes in chimp brains
(Caceres et al., 2003). The functional consequences of this consistent pattern
await further analysis.

We know something about genetic changes more directly relevant to lan-
guage. The FOXP2 gene was discovered to have mutated in an English-speaking
family (Gopnik, 1990, 1999). It has a pleiotropic effect: it causes orofacial dys-
praxia, but it also affects the morphology of language: affected patients must
learn or form the past tense of verbs or the plurals of nouns case by case, and
even after practice they do so differently from unaffected humans (see Marcus
and Fisher, 2003 for review). The gene has been under positive selection (Enard
et al., 2002) in the past (Fig. 3), which shows that there are genetically influ-
enced important traits of language other than recursion (Pinker and Jackendoff,
2005), contrary to some opinions (Hauser et al., 2002). We mention that there is
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Fig. 3.

a single known human language apparently with no recursion (cited by Pinker
and Jackendoff (2005)). It would be good to know how these particular people
(speaking the Piraha language in the Amazon) manage recursion in other do-
mains, such as object manipulation. Apes are very bad at recursion both in the
theory of mind or ‘action grammar’ (Greenfield, 1991).

It does seem that the capacity to handle recursion is indeed different from
species to species. Although the relevant experiment must be conducted with
chimps as well, it has been demonstrated that tamarin monkeys are insensitive
to auditory patterns defined by phrase structure grammar, whereas they discover
violations of input conforming to finite state grammar (Fitch and Hauser, 2004).
Human infants are sensitive to both before they can talk (Fig. 4).

It will be interesting to see what kind of experiment can produce consistent
patterns in such a capacity in evolving neuronal networks, and then reverse
engineer the proficient networks for this capacity.

We mentioned before that the fact that language changes while the genetic
background also changes (which must have been true especially for the ini-
tial phases of language evolution), the processes and timescales are interwoven.
This opens up the possibility for genetic assimilation (the Baldwin effect). Some
changes that each individual must learn at first can become hard-wired in the
brain later. Some have endorsed (Pinker and Bloom, 1990), while others have
doubted (Deacon, 1997a) the importance of this mechanism in language evolu-
tion. Deacon’s argument against it was that linguistic structures change so fast
that there is no chance for the genetic system to assimilate any grammatical
rule. This is likely to be true but not very important. There are linguistic op-
erations, performed by neuronal computations, related to compositionality and
recursion that must have appeared sometime in evolution. Whatever the explicit
grammatical rules are, such operations must be executed.

Hence a much more likely scenario for the importance of genetic assimilation
proposes that many operations must have first been learned, and those individu-
als whose brain was genetically preconditioned to a better (faster, more accurate)
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Fig. 4.

performance of these operations had a selective advantage (Szathmary, 2001).
Learning was important in rendering the fitness landscape more climbable (Hin-
ton and Nowlan, 1987). This view is consonant with Rapoport’s (1999) view of
brain evolution. This thesis is also open for experimental test.

An intriguing possible example of gene-culture coevolution has recently been
raised by Bufill and Carbonell (2004). They call attention to a number of facts.
First, human brain size did not increase in the past 150,000 years, and it did even
decrease somewhat in the last 35,000 years. Second, a new allele, ?3 of the gene
for apolipoprotein E originated sometime between 220,000 and 150,000 years ago.
This allele improves synaptic repair (Teter et al., 2002). The original form, ?4
entails a greater risk of Alzheimer disease and a more rapid, age-related decline
in general (Raber et al., 2000). More importantly, ApoE4 impairs hippocampal
plasticity and interferes with environmental stimulation of synaptogenesis and
memory in transgenic mice (Levi et al., 2003). Interestingly, the ancestral allele
decreases fertility in men (Gerdes et al., 1996). The facts taken together indicate,
but do not prove, a role in enhanced synaptogenesis in a period when syntac-
tically complex language is thought to have originated. More evidence like this
would be welcome in the future, since one such case can at best be suggestive.

In this chapter we focus on three issues in more detail. (1) What kinds of
neurobiological platforms can contribute to the realization of ECAgents, embed-
ded in simulated and robotic environments? This is important for information
technology as well for basic biology (the evolution of the language faculty). (2)
As explained in Chapter 10, concept formation must go hand in hand with lan-
guage development. Although it seems to be true that some animals lacking
language are able to form concepts, this problem has to be addressed in its
own right within ECAgents as well. The reason is that if language is useful,
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then agents must talk about something. Hence during the course of language
evolution/emergence semantics can hardly be separated from syntax/grammar,
even if such separation is somewhat misleadingly emphasized for the current
state of the human language faculty. Furthermore, language use feeds back onto
concept formation (what is a unicorn?). Therefore, we must tackle the issue of
concept formation as embedded in neuronal systems. (3) The biomimetic ap-
proach works only if the appropriate selective environments can be identified.
Is it possible to draw suggestive conclusions from comparison of language origin
scenarios in biology/linguistics? This final part of our chapter deals with this is-
sue, and emphasizes connection to the stages suggested in the previous Chapter
(10).

11.2 Evolvable Neuro-Genetic Systems for
Communication

11.2.1 Introduction

It is widely accepted that human language is a product of an evolutionary pro-
cess. A lot of efforts are devoted to the understanding of this process. Once we
understand it, we may exploit that knowledge to create agents that use complex
forms of communication.

Understanding an evolutionary process is relatively easy, if fossils of inter-
mediate stages are available. Unfortunately, this is not the case with the hu-
man language faculty. What possible ways remain then to investigate the above-
mentioned evolution? Simulation is a tempting possibility to replace reality, pro-
vided initial conditions and governing rules can be determined appropriately.

What needs to be simulated? Much depends on where we want to start. One
possibility is to keep the language faculty fixed throughout the simulation so
that all agents are born with full capacity to acquire a language. This approach
approximates the cultural evolution of language. Or we might want to allow
language faculty itself to evolve and eventually investigate the coevolution of
language and language faculty. In fact, this same coevolution has taken place in
the case of human language and brain.

With regard to our aim of creating a language faculty somewhat comparable
to the human one, we can benefit from the above-mentioned two approaches
differently. The first approach provides a method to test the performance of pu-
tative language devices under various circumstances. The results of the tests can
in turn be used to refine language devices through further design and intuition.
On the other hand – via automatic refinement of the language device through
evolution – the second approach may save us efforts to redesign.

Evolving language faculties can be done under many theoretical frameworks.
We turn to biology for inspiration (Fullmer and Miikkulainen, 1992; Sporns et al.,
2004). If we are interested in what makes the difference between language use by
humans and apes, we cannot avoid representing the language faculty in terms
of biology, such as neuronal systems. Moreover, up to now these are the only
known systems that seem capable of handling language proper.
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Fig. 5. The main units of a neuro-genetic system. (We don’t mention the Genetic
Algorithm here.) The shaded boxes are the most sensitive parts because of the
required preconceptions.

11.2.2 Background and Questions

These directions (to mimic evolution and the neural system) seem to be correct
and promising, but why do the results of these systems only work in simple cases?
One problem is the computational background. Currently available computer
capacity for parallel computing is really poor compared to the nervous system.
Simulating massively parallel systems, such as neural nets on a computer system
that is more or less designed on the basis of the Neumann principles is inefficient
and the advantage of parallelism is lost. If we want to see agents with neural
capabilities solving complex real world problems we have to wait for proper
hardware implementation.

The other and even greater problem is that these model systems are not
scalable. The development of communication requires increasingly complex com-
putational background; therefore the background genetic and neural systems
should inevitably keep pace with the problem that needs to be resolved (Zhang
and Mühlenbein, 1993). For example, some previous neuro-genetic models used
a direct coding of neurons and connections in the genome. This structure works
properly in small neural networks, but if the dimension of the network is growing,
the genome size is going to explode; therefore a failure is inherent.

What are the properties of a neuro-genetic system that is scalable? And
what are the requirements of the various communication levels? If we think
in the above-mentioned biomimetic way, then we have to conclude that the
genetic system behind the artificial nervous system has to be simple; however,
the presence of complex non-deterministic interactions is unavoidable.

One aim could then be to develop a neuro-genetic system that is supposed to
allow the emergence of communicating agents. As mentioned above, this could
be a biomimetic way to use genetic algorithms to evolve neuronal nets that are
able to generate and decode language, which is required to solve a given task.
It is obvious, too, that the structure of the network and the type of the genetic
algorithm and coding are crucial for reaching our goal (Fig. 5).
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The neural net has to be complex enough to solve a given task at a given
complexity. The genetic coding, the development process and the epigenetic pro-
cesses determine the structure of the neural net. These parts should support the
required structure in the neural net in order to solve the given task. We have to
be aware that the design phase of a similar complex system is the summarization
of our knowledge on developmental and genetic processes. If our knowledge is not
sufficient, the computational ability of the produced neural networks will remain
stuck under our assumptions. The genetic code and the developmental process
in the living systems are based on a fairly complex chemical world. One cannot
simulate the whole chemical process under the genetic system; therefore we have
to create hypotheses of the subject and create a model of these hypotheses. The
greatest challenge is to build the simplest model, which can create a scalable
and evolvable network (Stanley and Miikkulainen, 2003).

A possible task is to check the different ways of estimating the complexity of
neural networks (Hoffmann, 1993). Numerous research projects are being con-
ducted on this topic and we see that complexity is a very important, but not
sufficient term to describe the success of a given network. Complexity measures
may be useful in determingin the lowest degree of complication below which a
network cannot possibly handle a given task. A burning open question is this:
Are we able to find a minimal complexity level of the underlying artificial genetic
code that is proven under the failure of the generated neural network, if we know
the resolvable task? (Hoffmann, 1997).

This question is really difficult and even if one is able to find an answer, it
does not mean that all the required properties of the code are included in the
implementation.

In the next subsection we provide a brief enumeration of the supposedly
most important properties of neuronal networks, genetic codes and development
processes. The assumption that these are the (most) important elements for a
working neuronal implementation are open to experimental investigation.

11.2.3 Genotype Properties and the Genetic Algorithm

Genome Structure and Genetic Operators: The structure of the genome
is one of the most important issues. If we design a coding system, which is not
open ended, evolution will stop at the boundary of the genetic space. One way
to create an open-ended coding is to use a marker-based encoding scheme that
was inspired by the structure of the real genetic code (Fullmer and Miikkulainen,
1992). The other promising way is to encode information of the network in a tree
structure (Zhang and Mühlenbein, 1993). The genetic operators (point mutation,
deletion, duplication, recombination) work on this tree structure and mutate the
values of the nodes or change the structure of the tree. Duplication ensures the
open-ended behaviour of the system, and is able to scale up the search space, if
it is required in a new situation. To reduce the negative effect of genetic linkage
(Calabretta et al., 2003), the use of recombination is necessary. The optimal
combination of these operators is an open question and it depends on the coding
system and on the fitness landscape of the given task.
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11.2.4 Neuronal Networks (phenotype)

Complex Network Properties:Recent research revealed that large-scale brain
networks have interesting complex network properties. Scale-free and small-world
properties, functional segregation (modularity) and functional integration might
be necessary to achieve complex cognitive functions (Sporns et al., 2004). We
want to call attention to a useful distinction between neural and neuronal net-
works. Whereas the fomer take the nervous system as a loose analogy, the lat-
ter prefers to mimic the known biological properties at some model-dependent
level. Emphatically, there is conscious exlusion of properties in the latter that are
known to crucially contradict facts about patterns and processes in real nervous
systems.

Degeneracy:A degenerate system, unlike a fully redundant one, is extremely
adaptable to unpredictable changes (Tononi et al., 1998).

Lamination:It was shown that lamination might be advantageous to sup-
port more complex information processing in the cortex (Treves, 2003).

Topography:Topographical information in a neural network can play an
important role. The interpretation of the structure can be easier. The other even
more important reason to use topographical coding of neurons is the modeling
of the developmental process. Models, which acknowledge spatial information
in biological systems, yield various types of scale-free and small-world network
attributes, as the ones that are common in brain structures (Sporns et al., 2004).

Neuron Morphology:It was supposed that more structured neuron mor-
phology is required for more complex cortical functions (Elston et al., 2001).
Morphology has meaning only in those cases that are represented in a topo-
graphical space. A more complex surface can facilitate more complex connection
structure and if different neuron morphologies are encoded in the genome, the
search process can change the network structure by changing morphology.

11.2.5 Genotype-Phenotype Mapping and Development

Synapse Development:If the scaling of a network causes problems, week or
indirect mapping has to be applied (Zhang and Mühlenbein, 1993). It can be a
graph generating algorithm or a partly stochastic connection building process
(Balakrishnan and Honavar, 1995). There is even a new sub-discipline of evolu-
tionary computation that engages in the field of genotype-phenotype mapping in
artificial systems called artificial embryogeny (AE). (Stanley and Miikkulainen,
2003)

Learning:A learning phase in the development process can change the fit-
ness landscape, and it can be as effective as a Lamarckian strategy at improv-
ing search. (Gruau and Whitley, 1993) Because synapse development is a non-
deterministic process, learning plays a key role in synapse selection, too.

Synapse Selection, Pruning:One hypothesis for the importance of pruning
is that if the synapses at first are overgrown and later pruned, the memory
performance of the network is maximized in certain situations. (Chechik et al.,
1998) Another possible explanation for the importance of pruning arises from
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the developmental process. If the synapses join another neuron in a stochastic
way, optimal wiring should emerge after learning based pruning. Redundancy is
a precondition to this process (Kerszberg et al., 1992).

11.2.6 Summary of Questions

– What are the properties of a neuro-genetic system that is scalable?
And what are the requirements of the various communication lev-
els?

– The greatest challenge is to build the simplest model, which can
create a scalable and evolvable network.

– Are we able to find a minimal complexity level of the underly-
ing artificial genetic code that is proven under the failure of the
generated neural network, if we know the resolvable task?

11.3 Belief networks: a framework for language learning
and concept formation

11.3.1 Introduction

How language is acquired, and how concepts about the environment are formed
are the focus of two distinct disciplines in cognitive science (see Chapter 10 for
a related discussion). The ultimate goal of language learning can be phrased
as learning to recognize concepts expressed in utterances, that is ’to peep into
the head’ of the other speaker, and similarly, to express concepts in utterances,
that is ’to drip concepts into the head’ of the listener. Concept learning, on the
other hand, is the process by which an agent discovers concepts underlying its
perceptions that is derived from sensory input. As there are apparent parallels
in the cognitive processes involved in language learning and concept learning,
and context-dependent language strongly depends on the learning of concepts,
we suggest a framework that can capture multiple aspects common in these two
types of learning. However, we acknowledge the fact that whereas several animal
species seem capable of concept formation, natural language is unique to humans.
In the next subsection we provide a mathematically well-founded framework
which accommodates both language learning and concept learning in the same
computational architecture. Furthermore, as neurobiological plausibility requires
that the computations necessary for these cognitive processes are implemented
by neuronal networks, we also discuss the possible neuronal architectures capable
of performing these tasks.

There exist two markedly different approaches for language production (Sei-
denberg, 1997). While the innateness hypothesis argues that grammatical struc-
tures are innate (Chomsky, 1965; Marcus et al.), the statistical approach em-
phasizes that language is acquired on a statistical basis by learning transitional
probabilities of speech segments (Saffran et al., 1996; Pena et al., 2002). Be-
sides the arguments of incomplete experience and fast learning of language, the
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success of formal learning theories gives a strong support for the innateness the-
ory. However, among the drawbacks one can enumerate the learned nature of
language, the incredible plasticity of linguistic structures and the fact that this
theory is at odds with accounting for errors committed during language produc-
tion (Yang, 2004). Also, there is accumulating evidence that statistical cues are
used both at comprehending and producing utterances (Seidenberg et al., 2002),
making a statistical approach perhaps more appealing. Statistical learning, too,
has been criticized. Most importantly, learning transitional probabilities or joint
distributions of high dimensionality would need an inordinate amount of time
and data and require unachievable capacities (Yang, 2004).

A probabilistic approach to concept formation is also becoming acknowledged
(Gopnik and Schulz, 2004). Causal learning in children has been described by
Bayesian combination of likelihoods and prior knowledge (Gopnik et al., 2004).
Various computational studies have shown examples of learning concepts based
on a limited set of positive examples (Tenenbaum, 1999) and learning concepts
using a semi-supervised learning algorithm (Kemp et al., 2004).

A possible approach combines language learning and concept formation in
a unified framework by treating both as special cases of unsupervised learning
of concepts from different sources of input. The input consists of utterances in
the case of language learning, and high level perceptual primitives in the case
of concept formation. This approach is encouraged by recognizing that in both
cases the goal is to extract concepts from data, and thus the same mathematical
tools may be applicable to modelling these processes.

An open question is whether the neural architecture that can perform com-
putations necessary for learning concepts and linguistic structures using unsu-
pervised learning paradigm is possible.

A Bayesian description of language learning accommodates the naive statis-
tical learning and the innatist approaches as extremes of a continuum by using
a specific and learnable parameterization of the joint distribution. Agents using
perceptual learning rely solely on sensory information during learning, teaching
signals, as required in a supervised learning paradigm, are not available. Unsu-
pervised learning aims at discovering aspects of the statistical regularities of the
data. This structure is provided by the laws of nature (physics, biology, etc.)
and logic in the case of concept learning, and the rules of syntax in the case
of language learning. Therefore, concept learning is successful if it develops its
own internal model, which reflects how concepts (for instance the objects of the
environment) cause perceptions, and language learning is successful if the model
developed reflects how concepts lead to utterances.

11.3.2 Bayesian computation: An introduction

The final goal of an unsupervised learning process is to characterize the joint
distribution of observed variables. As discussed above, describing a whole joint
distribution of many variables relying solely on the occurrence frequencies of
different values of the observed variables is practically unfeasible. In order to
parameterize the joint distribution a number of constraints are introduced
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that describe how the variables of the system interact (or rather do not
interact), i.e. how the occurrence of one value of a given variable affects the
occurrence of the other variable. The mathematical mean of this dependency
is given in the conditional probability. These conditional dependencies de-
fine a directed graph, called a Bayes network, of the joint distribution. For
example, the colour, softness, and taste of a peach depend on its ripeness,
and these dependencies are probabilistic due to natural variations among
peaches. Thus knowing the ripeness of a peach allows one to make very strong
prediction about its colour, softness, and taste. Moreover, if one wants to
learn the distribution of peach properties, one may not need to represent a
four-dimensional joint distribution, only a one-dimensional distribution of peach
ripeness, and three two-dimensional conditional distributions that describe
the dependency of colour, softness and taste on ripeness. However, unlike
softness and colour, ripeness is not a directly observable quantity. In a graphical
model there are both observed variables that take well defined values during
observation, and hidden variables, whose values are not directly observable.
This way, after an observation event the observer is faced with the challenge
to estimate the occurrence of a given value of the hidden variable knowing
only the conditional probability of the observed variable given the value of
the hidden variable(s). The best estimate of this value is given by the Bayes rule:

P(Hidden | Observed) = P(Observed | Hidden) P(Hidden) / P(Observed).

As hidden variables by definition are not subject to observation, one has to
make inference over the hidden variables in order to calculate posterior distri-
butions.

Learning in a graphical model aims at estimating the parameters using
training experience. Given the probabilistic nature of inference, the relationship
between the likelihood of training experience given a set of model parameters
and the posterior probability of model parameters is not straightforward.
According to Bayes rule, the posterior probability of model parameters
(P(Par|Stim)) can be calculated by combining the likelihood (P(Stim|Par))
with our prior expectations (P(Par)):

P(Par|Stim) = P(Stim|Par) P(Par) / P(Stim).

Bayes rule not only tells us how to calculate the posterior, but gives us the
optimal way to calculate it, in other words, provides the formula to extract
the most information that is available using the input and prior expectations.
After making inference over hidden variables, the second step in learning the
parameterized distribution is making inference over model parameters. Finally,
if the graphical model itself is not known a further inference is needed that is
performed over the graphical models.
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11.3.3 Application of belief networks to language learning and
concept formation

The formalism provides a transparent and intuitive representation of the not
directly observed concepts as hidden variables of a graphical model, and a sound
representation of the relationships between concepts and observed environmental
variables or utterances, in the case of language. There are mathematically well
founded recipes to learn distributions necessary for recognizing concepts and
grammatical regularities. Additionally, the unsupervised learning paradigm does
not necessitate the presence of a teacher, which would be unrealistic in most of
the real world learning situations.

During learning of concepts and linguistic structures, the learning system
has to cope with challenges of various origins. On one hand the system has to
learn from a finite sample of data (e.g. a given linguistic structure in different
contexts). On the other hand, both learning takes place in a noisy environment:
statistical variations might arise in the input data, inherent stochasticity might
be present, fidelity of transmission in communication channels might be low,
communication partners might communicate ungrammatical sentences; and in-
herent ambiguity is present in the system (multiple relevant causes can explain
the input). As a result, an agent has to be aware of the ambiguity in the input
data in order to be successful in acquiring concepts and extracting syntactic
rules. The best way to do so is representing this ambiguity in the model of the
external world, in other words, the agent not only has to store the mean of model
parameters, but also a distribution of model parameters weighted by their cor-
responding probability values. This claim is directly provided by the framework,
as belief networks give a parameterization of the probability distribution. In this
framework, during perception the model parameters have to be estimated re-
lying on the distribution of training experience. A particularly effective way of
extracting abstract rules from the input can be achieved if, besides represent-
ing observed variables, characterizing particular features of the input, hidden
variables, possible causes, are distinguished. This way, one particular model of
the input data is parameterized by the dependencies of hidden and observed
variables.

Importantly, a system dealing with these issues has two critical roles: it has to
function, both as a recognition model (i.e. recognizing concepts from perceptions
and utterances), and as a generative model (predicting perceptions from available
information and generating utterances from concepts). This feature is inherent
to graphical models, as Bayes rule provides a way to operate in both ways.
When learning concepts, various contingencies of possibly different modalities of
sensory input have to be tackled; therefore the graphical model itself is subject to
change, depending on the available information. Therefore inference over model
structures (Belief networks) is also a key component of the learning mechanism.

Belief networks have already been applied to various biological learning phe-
nomena, classical conditioning in animal experiments (Courville et al., 2004,
2005), causal learning in human infants (Gopnik and Schulz, 2004; Gopnik et al.,
2004), and concept formation in humans (Tenenbaum, 1999; Kemp et al., 2004).
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Also, statistical approaches have been applied to language acquisition problems
(see above).

The main question that remains open is the class of graphical mod-
els that are appropriate for evaluating the joint distribution of relevant
variables in concept and language learning.

A fundamental challenge is to find the optimal balance between open-
ness (so that many different specific model structures can be accommo-
dated within the chosen class of models) and learnability (so that model
structure can be efficiently inferred from limited data). This amounts to
putting the hoary nature-nurture dilemma in this case into a concrete,
well-defined, quantitative framework.

Note, that the previous question may be studied for the two problems
(language learning and concept formation) separately. However, another
open issue concerns the interaction of the two learning systems: how the
two systems could use the same set of hidden variables (the concepts),
what is the structure of dependencies between hidden variables that
is appropriate for both systems, and how learning in one system can
potentially bootstrap learning in the other system.

A hint to this question is given by looking at psychophysical experiments
that describe what basic chunks of the visual scene are used in infants and
adults in order to characterize the statistical regularities of the environment
(Fiser and Aslin, 2002). In a series of studies these researchers explored how
more complex regularities and how irrelevant environmental variables affect the
effective performance of human subjects.

11.3.4 Neurobiological implementation

While a statistical approach characterizes the computations necessary for con-
cept and language learning, the question of how neuronal networks implement
these computations remains open. Basic operations that a feasible implemen-
tation has to be capable of are inference over latents, model parameters, and
models. As these computations might take place on different time scales, it is
plausible to assign them to different levels of neuronal computations. While in-
ference over latent variables might be corresponded to activity dynamics of the
neuronal network, inference over model parameters and models can be corre-
sponded to synaptic dynamics, i.e. plasticity of synapses. Practically, evolution-
ary processes form a third level of dynamics that might be beneficial in tuning
the initial priors of parameters.

Candidate circuits in the brain to perform calculations necessary for statisti-
cal learning in graphical models involve the prefrontal cortex and inferotemporal
cortex (Miller et al., 2002, 2003). Combined psychophysical experiments and unit
recordings in primates have revealed neurons in these brain areas that can adapt
to response selectively for relevant environmental variables (Rainer et al., 1998).
Neurons in the prefrontal cortex were shown to respond selectively to abstract
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rules (White and Wise, 1999; Wallis et al., 2001), and in a task-selective manner
(Asaad et al., 2000).

Although neural implementations of Bayesian computations have only re-
cently been started to develop, a number of promising attempts are available. In
firing rate-based models Pouget et al. (1998) have shown how to represent envi-
ronmental variables in a near optimal way, that later was extended to be able to
perform multi-sensory integration (Deneve et al., 2001) and to arbitrary smooth
transformations of sensory variables (Latham et al., 2003). In their study, Sahani
and Dayan (2003) presented a model for parallel representation of stochasticity
and multiplicity in a neural network model. Rao (2004) has recently shown an
implementation of Bayesian computation in recurrent neural network. A num-
ber of studies have been published on the implementation of Bayesian compu-
tations in spiking neurons (Hinton and Brown, 2000; Deneve, 2004; Lengyel and
Dayan, 2004; Zemel et al., 2004). Although these models are appropriate for
specific purposes, a number of them represent one latent variable and multiple
observed variables with independent noise on each observed variables or use hid-
den Markov models for computations. Performing inference over latents is one
component of the computations, but the remaining two types of inference, one
over model parameters, and the other on models, are also a must for neural
networks in order to account for learning in the belief network framework.

The challenge of the research is finding the neural network architecture that
is capable of accomplishing the computations in a belief network structure in
order to optimally extract information from the available training experience.

11.3.5 Concluding remarks

If the learning systems are not doomed to only passively observe variables but
are also allowed to actively interact with the environment, a whole new set of
questions need to be investigated. From a theoretical point of view it could
be asked what the optimal interaction is that reduces uncertainty maximally
under some loss function? Predictions from such theories then could be tested
experimentally to see whether subjects actually perform optimal interventions.
For example, these interventions could take the form of object manipulations for
concept formations, or utterances for language learning.

A crucial question links the belief network approach discussed in this section,
with the evolutionary neurogenetic approach presented in the previous section.
Is it possibe to select for neuronal networks that, in final analysis, perform the
calculations phenomelogically decsribed by the graphical models?

Finally, adopting a game theoretic approach in which multiple agents interact
with each other and the environment based on the above principles could be used
to investigate the emergence of conventionalized communication systems (Steels,
1998a, chapter 10).
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11.4 Designing selective scenarios of language evolution

The origin of human language is one of the hardest problems of science. Speech
and gestures do not fossilize, and even hominid fossils only give an indirect
evidence of linguistic capacity. It seems that the only possible approach to get a
coherent picture is to try to re-enact the evolution of language with the help of
agent-based computer simulations. One crucial ingredient of these simulations is
the selective scenario.In this chapter, we focus on the identification of a selective
scenario that might lead to human-like forms of communication. For a similar
attempt to related to more simple forms of communication, see Chapter 2.

Under selective scenario we mean a set of relevant tasks that affect the fit-
ness of agents. Obviously not every task would enable selection with respect to
the use of language-like communication. There are a number of tasks that can
either be solved without communication at all, or by means of simple signals
(e.g. the overwhelming majority of animal communication is done by so called
,,self-reporting” signals, which means signals that transfer information about
the state of the signaller – Maynard Smith and Harper, 1995); or language-like
communication (further abbreviated as LLCS*1) might be useful, but the task
itself is too complex to expect LLCS to evolve in that context. All in all, the
success of such a computational approach very much depends on picking the
appropriate task; that is, on constructing the appropriate selective scenario.

There are at least two possible approaches to come up with a selective sce-
nario fostering some degree of linguistic competence: (i) construction of a selec-
tion scheme as engineers would do it; (ii) trying to infer from biology a SET
of constraints that significantly increases the likelihood at arriving the desired
result.

Once we set ourselves to the task of constructing a biomimetic scenario the
following questions arise:

– What properties should such a scenario fulfil?
– What can we learn from the scenarios that were put forth to explain the

origin of human language?
– How can we design such a scenario without hardwiring the end result into

it?
– How can such a scenario be implemented?

In the following sections we consider these questions in turn.

11.4.1 Basic criteria for a selective scenario of language evolution

What properties should a selective scenario of language evolution fulfil? For
a detailed analysis of the following criteria see Szamado and Szathmary, 2005
1 I call language-like communication systems (LLCS) any system that has the following

properties: use of symbols, compositionality and recursion, and cultural inheritance.
These are the most important design features that distinguish human language from
animal communication systems (Hockett, 1960a).
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(TREE, in prep.). (1) First of all, if we assume an evolutionary computational
paradigm, then an LLCS should obviously increase the fitness of those agents
that are able to use it. (2) Second, recent game theoretical findings suggest (see
Box.1.) that a communication system, using cost-free signals, such as human
language, is highly unlikely to be able to evolve, if there is a conflict of interest
between the potential communicating agents. (3) Third, the work of Steels and
his colleagues (2002a) shows that the first concepts of LLCS must be grounded in
reality, otherwise no shared symbolic representations can evolve. (4) Fourth, the
most prominent practical feature of human language is its unparalleled expressive
power. It enables human beings to make an unlimited set of statements – for this
reason human language is an example of so-called unlimited hereditary systems
(Szathmary, 2000);– moreover, it enables them to communicate these statements.
Consequently, one shall look for a situation in which there was a need to use such
an expressive power, or at least there is a positive feedback mechanism between
the existing expressive power of LLCS and the optimal expressive power under
the given situation. (5) The fact that no other species evolved the equivalent of
human language strongly suggests that human language is a special adaptation.
Hurford et al. (1998) argues in favour of a similar approach: “. . . in general,
more realistically and more eclectically, for any set of circumstances proposed
as individually necessary and collectively sufficient to explain the emergence of
Language, one has to show that this combination of circumstances applies (or
applied) to humans and to no other species.” Thus, we shall probably look for
a selective scenario that is not present in any of the extinct and extant species.
(6) Human language requires some pre-adaptations (Hurford, 2003; see Box.2.),
and “picking” the right set of preadaptations can be crucial for the success of
the simulation. Determining the “minimal set” of these pre-adaptations should
be a major challenge for future research.

A debate has been underway for a long time about the honesty of animal
communication. The debate focuses on the proposition that signals need to be
costly in order to be honest (Zahavi, 1975, 1977). While some models seemed
to prove this statement (Grafen, 1990; Maynard Smith, 1991), others were able
to show that cost-free signals can be evolutionarily stable even under a conflict
of interest, provided certain conditions are met (Hurd, 1995; Bergström and
Lachmann, 1998; Szamado, 1999). One of the important results is that cost-free
signals, in general, are expected to be evolutionarily stable, provided there is no
conflict of interest between the communicating parties (Maynard Smith, 1991).
In line with this result, recent game theoretical investigations strongly suggest
that prominent features of human language could arise under shared interest,
rather than under a conflict of interest. On the one hand, a number of models
show that some key features of human language can evolve, provided there is
no conflict of interest between the participants (Nowak and Krakauer, 1999;
Nowak et al., 2000). On the other hand, (Lachmann et al., 2001) were able to
show that human language can be used honestly, even if there is a conflict of
interest between participants. However, no one has been able to show that the key
features of human language can evolve under a conflict of interest. The problem
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#1 #2 #3 #4 #5 #6

1. Language as a mental tool (Burling, 1993) - + + + - +

2. Grooming hypothesis (Dunbar, 1998) - + - - - -

3. Gossip (Power, 1998) + - - + - -

4. Tool making (Greenfield, 1991) + + + + - +

5. Mating contract (Deacon, 1997b) - - - - - -

6. Sexual selection (Miller, 2001) + - - - - -

7. Status for information (Dessalles, 1998) + - - + - -

8. Song hypothesis (Vaneechoutte and Skoyles,
1998)

- - - - + -

9. Group bonding/ ritual (Knight, 1998) - + - - - -

10. Hunting theories (Washburn and Lancaster,
1968)

+ + + + - -

11. Motherese (Falk, 2004) + + - - - -

Table 2. The explanatory power of the various theories (Szamado and Szath-
mary, 2005, in prep.). (1) Selective advantage; (2) No conflict of interest; (3)
Concepts grounded in reality; (4) Expressive power; (5) Uniqueness; (6) Origin
of cognitive capacities.

with conflict-of-interest situations is that they are very susceptible to abuse,
which can manifest itself in dishonesty or cheating, which in turn might ruin the
signalling system. This logic was confirmed by various computer simulations of
a simple communication game (Noble, 2000; Harris and Bullock, 2002). These
simulations show that communication only evolves, if there is no conflict of
interest between the signaller and the receiver.

Hurford (2003) gives a list of biological properties that served as cognitive
pre-adaptations for language capacity: pre-phonetic, pre-syntactic, pre-semantic,
pre-pragmatic and elementary symbolic capacities.

Donald’s (1993) “executive suit” can be taken as another starting point:
metacognition; self-monitoring; imitation; multitasking; auto cuing and explicit
memory; self-reminding; self-recognition; purposive rehearsal; reciprocal inten-
tionality; interpretational ability (symbolic ability).

11.4.2 Comparative analysis of selective scenarios put forth to
explain the origin of human language

What can we learn from the theories that were put forth to explain the origin
of human language? Table 2. (Szamado and Szathmary, 2005, TREE, in prep.)
summarizes these theories and gives a short evaluation whether the given theory
fulfils our criteria or not.

As we can see from table 2 there are only three theories that can answer a
significant number of questions. These are as follows: language as a mental tool,
tool making, and hunting theories. Thus, the most parsimonious explanation
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seems to be assuming that the origin of human language has something to do
with primary representational systems, tool making, and hunting.

11.4.3 Language as an emergent communication system

Special care should be taken to avoid hardwiring expected solutions into the
investigated model system. Thus, there is a need for a flexible (open ended) neu-
ronal control mechanism that has the potential to evolve complex networks out
of very simple small-scale networks, and thereby to give unexpected solutions.

11.4.4 Implementation – possible research strategies

Top-down: Start with our ,,educated guess” that is creating a selective scenario in
which agents face a problem of cooperative hunting, which they can only solve by
communicating their mental models with each other; in addition, the successful
implementation of the task should require the use of certain tools. Unfortunately,
this would be a fairly complex scenario assuming highly developed mental skills
on the part of our agents.

Bottom-up: Start with simple selective scenarios characteristic of animal com-
munication systems and then gradually increase the complexity of the task. The
aim is to achieve the complexity of the selective scenario outlined above. This
is definitely a more risky and more time-consuming approach than the previous
one. Unfortunately –as noted above – the current state of the art makes it im-
possible to implement that highly complex scenario, thus this simple but more
tedious bottom-up approach seems to be the only way to go at the moment.

11.4.5 Major research questions

1. What is the minimal set of pre-adaptations / cognitive skills that are neces-
sary for LLCS to evolve?

2. What is the minimal complexity of a selective scenario that could select for
LLCS?

3. What is the minimal sequence of selective scenarios – and what is the actual
sequence – that can lead from a simple system typical of animal communi-
cation to the minimal complexity selective scenario?

11.5 Outlook: Stages in the emergence of language

In Chapter 10 the emergence of language is conceptualized to have occurred in
VI stages, some of them carved up into sub-stages. The aim behind the open
questions posed in the present chapter is also to implement the emergence of
language in artifical, simulated or embodied agents. One can rightly ask about
the connection between the two approaches. A few remarks are in order.

First, nobody knows how language originated and how this transition can
be re-enacted in artificial systems, hence the need for parallel investigations.
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Nobody knows where the crucial breakthrough may (or we hope: will) happen.
Second, we do know that language did emerge in the human lineage. It may
be the case that the easiest, and for all practical purposes the only way at
arriving at language-like communication system is to follow the set of selective
constraints that acted on the human lineage. Alternatively, a more enginnering-
type approach may bear equal fruits, possibly even earlier. Third, as explained in
Chapter 10, the six stages proposed there may not correspond to the actual stages
of language emergence in biological evolution. It is an open, exciting question
how emgineering and biomimetic scenarios might differ, even if they reach a
similar goal in the end. The Table at the end of Chapter 10 clearly shows the
lack of knowledge as to what the possible neural/neuronal implementations of
the suggested stages could be. In this chapter we have discussed a few open
questions in the neurobiological realm. We believe that it is possible to give
answers to these questions. These would enable us to fill the empty slots in
table, or contruct another table that may be closer to realistic stages that are in
fact neuronally implementable.
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Theoretical and Complex Systems Challenges

Luc Steels and Vittorio Loreto

Sony CSL Paris and La Sapienza Rome

12.1 Introduction

Recently the study of the self-organisation and evolution of language and mean-
ing has lead to the idea that language can be viewed as a complex dynamical
system (Steels, 2000), and hence the theoretical methods of complex systems
science have become very relevant to study language. Recently there has been
a growing body of work successfully investigating various statistical aspects of
language (such as explanations of Zipf’s law, Ferrer and Sole, 2003). In the
ECAgents project we will focus however on challenges that are relevant for IT
applications. Indeed we are now beginning to see concrete applications in the
field of Embodied Communicating Agents, both in robotics and in large-scale
peer-to-peer distributed information systems, so that it becomes necessary to
have mathematical models of the semiotic dynamics generated by evolving lan-
guage systems before the technology can be usefully employed. Most importantly,
we want to have methods for predicting the macroscopic behavior of artificial
systems based on the microscopic behavior of the agents.

A language is a semiotic system in the sense that it relates signs (words,
grammatical constructions) to the world through the intermediary of conceptu-
alisations (meanings) (see figure 1). Such a semiotic system can then be used
for communication in the sense that a conceptualisation of an object, when it is
distinctive compared to that of other objects, can then be used to draw attention
to this object (or situation or aspect of a situation).

When language is viewed as an evolving system, each of these relations may
change: new words and grammatical constructions may be invented or acquired,
new meanings may arise, the relation between language and meaning may shift
(e.g. if a word adopts a new meaning), the relation between meanings and the
world may shift (e.g. if new perceptually grounded categories are introduced),
both causing shifts between language and the world. All these changes happen
both in the individual, as he or she is learning a language and its underlying
ontology, and in the group as it is settling or maintaining a shared language and
a shared ontology. Semiotic dynamics is the subfield of dynamics that studies
the properties of such evolving semiotic systems. Because language use of one
individual is obviously influenced by that of another, we are dealing with a multi-
component system with individual behaviors as well as interactions between the
components, similar to n-body systems of interacting particles, molecules, or
organisms.

In chapter 10 of the White Paper a number of stages have been identified
leading progressively to more complex human-like language. At each stage we



Fig. 1. The semiotic triangle groups the three basic semiotic relations. In the
study of semiotic dynamics, the change in time in each of these relations is
studied both in individuals and in a population.

define a minimal communication system that is fully adequate to handle the
expressive complexity required at that stage. A minimal communication system
includes mechanisms for conceptualising what to say, coding this into a sentence,
decoding the sentence to reconstruct the intended meaning and interpreting this
meaning back into the world. A minimal communication system also requires
mechanisms for the expansion and adoption of the ontology and mechanisms for
the invention and adoption of linguistic conventions.

At each stage, a number of theoretical challenges re-occur, but each stage
also introduces its own additional challenges. The set of stages is summarised
again in the following table:

Stage Meaning Form Issue
I Individuals (proper) Names Convergence on convention
II Single Categories Single Words Co-evol. language/meaning
III Multiple Categories Multiple Words Compositionality
IV Multiple Obj. + Predicates Grammar Origins of grammar
IVa id. Syntax Exploitation of syntax
IVb id. Grammar Intermediary layers
IVc id. Recursion Hierarchical re-use
IVd id. Meta-grammar Two-level evolution
V Second Order predicates Grammar Second order
VI Meta-level Grammar Level formation

The ’stages’ chapter of the White Paper (chapter 10) also introduced the
framework of language games as a useful minimal model of Embodied Commu-
nicating Agents. This framework is also assumed for the present paper.

It is useful starting with an example. We shall consider the so-called ”Talking
Heads” experiment performed at the CSL-SONY laboratory in Paris a few years
ago (Steels, 1999). In these experiments a population of robotic agents inter-
acts performing, at each time step, binary language games, i.e. language games
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between two agents chosen randomly in the population. The outcome of these
experiments is the emergence of a shared and efficient communication system in
the whole population. These experiments represent then an ideal playground to
identify the main ingredients which are supposed to be crucial for the develop-
ment of efficient communication systems. It is possible to isolate in particular
hardware and algorithmic, e.g. software, ingredients. Hardware ingredients are
represented by the ensemble of the sensory-motors devices which allow a robotic
agent to interact with the actual environment. The algorithmic ingredients are
represented by the ensemble of procedures an agent performs to process the in-
puts received from the external environment and update its internal registry. The
ensemble of these procedures can be simulated in an artificial environment and
analyzed in great details. In this perspective three main theoretical challenges
can be identified.

(a) identifying and defining the simplest (minimal) models (i.e. algorithmic pro-
cedures) which could lead to efficient communication systems. It is important
to stress the need in this field of shared and general models to create a com-
mon framework where different groups could compare their approaches and
discuss the results. On the other hand the models should exhibit the extreme
level of simplicity compatible with the desired phenomenology. This has sev-
eral advantages. It could allow for discovering underlying universalities, i.e.
realizing that behind the details of each single model there could be a level
where the mathematical structure is similar. This implies, on its turn, the
possibility to perform mapping with other known models and exploit the
background of the already acquired knowledges for those models.

(b) identifying the most suitable theoretical concepts and tools to attempt the
solutions of the models. It is important to outline how the possibility to
obtain analytical and general solutions for the models proposed could open
the way to a positive feedback providing further inputs for understanding
and designing new experiments and devices. In general there are two main
questions one should be able to answer. On the one hand, we need to find
the general laws that govern the semiotic dynamics of a particular system,
for example, how the maximum number of words in use is related to the
number of agents in the population. On the other hand, we need to find the
explanation of these laws as a mathematical property of the dynamics.

(c) coupled to the theoretical activity there should always be an experimental
activity with a twofold aim. On the one hand the experiments, as well as
the observation of the realities one is interested in, provide inputs for the
modeling and the theoretical activity. On the other hand they represent the
framework where the theoretical predictions are checked. The outcome of
these experiments will be compared with the theoretical and the numerical
results and it will be used to better focus the modeling and the theoretical
approach. There should then exist a positive feedback mechanism between
the theoretical and the experimental activities in order to make the pro-
gresses robust, well-understood and concrete.
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Just to give an example of a possible path to attack the problem let us focus
on a specific example already carried out for the so-called Naming Game, possibly
the simplest stage of the language games performed by a population of agents.
In this game, a set of agents can communicate pair-wise by naming objects of
the environment. Each agent relies on his own inventory listing name/object
relations. Starting from empty inventories, the agents create or learn names by
performing games with each other until a final state is reached where all agents
share a common system of conventions. This final state is approached through
a characteristic path depending on the parameters of the game. Besides the
number of agents and objects in the system, the approach to the final state is
determined by the parameters entering in the rules governing the inventory evo-
lution through word acquisition and loss. Whereas the evolution of the system
can be studied in detail through computer simulations, a theoretical description
of the complex dynamics would be highly desirable. It is thus important to define
models of increasing complexity in order to understand the role and the effect
of the different ingredients of the models. At the simplest level, i.e. at the level
of the so-called Random Naming Game, where neither biased selection of words
in competition nor elimination of them is present. In this case each agent keeps
for every object all the associations form-meaning that has ever experimented.
As a result the population reaches a successful communication system which is
not efficient, due to the high number of associations form-meaning each player
should keep in mind. This model has been solved at the mean-field level and the
agreement between the theoretical predictions and the simulations is excellent.
What should characterize an efficient communication system is a unique asso-
ciation form-meaning shared by all the individuals of the population. In order
to reach this goal we had to pass to a higher level of complexity by introduc-
ing models where a selection and competition of associations form-meaning was
at play. After a careful and systematic exploration of the parameters space we
ended up finally with a much simpler version of the naming game, which leads
to a successful and efficient communication system. This model is then the ideal
candidate for an analytical treatment as well as for further generalizations. A
preliminary mean-field approach has been already developed and it gave already
some encouraging though preliminary results. It had been possible for instance
to clarify several aspects of the general phenomenology: role of the population
size, role of synonymy and homonymy, etc. On the other hand this model could
be used as a starting point to address more complex and realistic language games
framework (cf. chapter 10).

Next section lists the basic ingredients which characterize the semiotic dy-
namics of a population of agents during the emergence of a successful commu-
nication systems.

12.2 Main features of semiotic dynamics

An evolving semiotic system has a number of external parameters which circum-
scribe the complexity of the semiotic task:
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1. The size of the population Nag. This is the number of agents that form a
community and have to agree on a shared language inventory and underlying
ontology, related to the environment.

2. The flow-rate of the population ρNag = ˙Nag. The rate at which new agents
enter and leave the population. In the simplest cases the number of agents
is considered constant. At higher levels of complexity one could ask how
a change in the population size affects an already well-established commu-
nication system, i.e. when the change occurs after the population reached
coherence. If the population change occurs during the establishment of the
communication system the question is whether or not a successful commu-
nication system will emerge (eventually of what type).

3. The complexity of the environment which is quantified in terms of the num-
ber of possible meanings M that needs to be expressed. For example, in
Stage I (naming game) the set of possible meanings is the set of possible
objects in the domain. In Stage II (single category guessing game) the set of
possible meanings is the set of possible categories.

4. The flow-rate in the meaning space ρM = Ṁ , i.e. the rate with which new
meanings become relevant and others become irrelevant.

5. The error-rate in transmission εs, which determines how reliable utterances
are transmitted or received by other agents. For example, if a speech medium
is used it will not be possible to get absolute accurate transmission of the
utterance.

6. The error-rate in feedback εf , which determines how far the non-verbal com-
munication is reliable. For example, on real robots there are likely to be
serious difficulties in pointing or joint attention.

7. The error-rate in cognition εc, which may cause deviations in the application
of the inventory due to forgetfulness, sloppiness, etc.

An evolving semiotic system also has a number of properties which can be
used to determine how far the system is optimal. They depend on the nature of
the inventory. Here are some examples:

1. Total number of words in the lexicons of all agents Nw

2. Average number of non-zero strength word-meaning pairs in the population
(inventory) Iag

3. Number of syntactic and semantic categories in the grammars of the agents
Nc.

4. Number of grammatical constructions in the grammars of the agents Ng.

12.2.1 Communicative success

Obviously the most desirable property of an evolving semiotic system is that
the agents reach communicative success. What constitutes success depends on
the nature of the game. For example, in the guessing game it means that the
speaker agrees that the topic identified by the hearer is equal to the one he
initially decided to draw attention to.
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The cumulative communicative success Sa(t) of an agent a at time t (i.e. after
t games) averaged over the last n games (time-steps) in which a participates,
can be defined as:

Sa(t) =
1
n

∑
i=t−n+1,t

sa(i) (1)

where sa(i) is the score of a single guessing game played by two members of A,
one of them being a.

The cumulative success S(t) for a population of Nag agents A for the last
series of n games at game t is defined as

S(t) =
1
2

∑
a=1,Nag

Sa(t). (2)

12.2.2 Convergence

It is next useful to compare the ontologies and language inventories of different
agents in a quantitative way in order to track whether convergence is reached.
Convergence is obviously related to communicative success but there can be high
degrees of success without absolute convergence if there is sufficient sharing.

The category variance cv between the agent ontologies can be measured by
computing the cumulated distance between the ontologies of the agents of a
population A =

{
a1, . . . , aNag

}
, as in

cv(A) =
2

Nag(Nag − 1)

Nag∑
i=1

Nag∑
j=i+1

D (ai, aj), (3)

where we have introduced D(ai, aj) as a distance measure between the ontologies
of agents ai and aj , to be defined in terms of the specific implementation of these
ontologies.

Similarly we can define a measure of linguistic variance lv between the lan-
guage inventories of different agents by computing the cumulated distance be-
tween the inventories of the agents of a population A =

{
a1, . . . , aNag

}
, as in

lv(A) =
2

Nag(Nag − 1)

Nag∑
i=1

Nag∑
j=i+1

L (ai, aj), (4)

where L(ai, aj) is a distance measure between the language inventories of agents
ai and aj . This measure is to be instantiated depending on the structure of the
inventory or what aspect of the inventory one is interested to track.

Given these measures of variance at a particular point in time, we can define
the cumulative variance similar to the way cumulative success is defined for
discrimination or guessing games. Other useful measures quantify the size of the
language inventory or the ontologies of individual agents as well as the group,
the degree of synonymy or homonymy present in the inventories of the agents,
the number of syntactic and semantic categories, etc.
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12.2.3 Optimality

Communicative success or convergence do not yet determine whether the agents
will use an optimal communication system. Definitions of optimality depend
on the stage of complexity and the type of inventory. Criteria for optimality
generally have to do with the number of linguistic elements (words, linguistic
categories, grammatical constructions) that are used by individual agents or by
the population.

12.2.4 Network topology

A critical aspect of communication is the communication topology, that is, who
communicates with whom. Network theory has developed very useful theoret-
ical and modeling tools for understanding the structure and consequences of
different types of networks. It is important to understand the role of the com-
munication topology in collections of agents, both in concrete simulations and
more abstractly. In particular there are two main questions: (a) what is the effect
of a non-trivial communication topology, e.g. hierarchical structures in which in-
formation converges on a single agent or a sub-set of the agents, of a group of
embodied agents (e.g., contrasting with the infinite dimension case, in which
everyone can communicate with everyone); (b) what communication topologies
spontaneously emerge in simulations in which collections of agents have some
particular task to perform.

12.3 The lesson of complex systems

It is useful to stress the importance of developing a common language and a
fruitful exchange between complex systems research and IT for the specific area
of evolving communication systems. IT-researchers need to be able to phrase
problems in terms understandable to complex systems researchers and vice-versa
there needs to be an infusion of culture from IT into complex systems research.

More specifically the following areas of complex systems research are partic-
ularly relevant for the approach to the emergence of successful communication
systems.

12.3.1 Evolutionary Game Theory

The project partners believe that it is possible to transport the methods and
techniques from Game Theory, as currently applied to biology and economics,
to the domain of evolving communication, particularly by the development of a
formal theory of evolutionary language games. Systems of interacting agents have
been widely studied in economic and biological contexts, however, as pointed
out previously in this proposal, the traditional theories often assume hypothesis
which are not realistic when compared to real or even artificial embodied agents.
Moreover, in most of the literature on conflict-cooperation in both animal and

162



human societies (e.g., behavioral ecology, economy), the important question of
the characteristics of communication among interacting agents is not analyzed. A
main objective should then be that of analyzing agents collective behaviour under
the most general conditions: first of all one needs to understand how coordination
and learning may arise when agents are endowed with given properties and
interact among themselves and/or with the environment in a given way. Still,
one wishes to allow the widest possible variety on the choice of the individual
profile or the nature of the environment.

Beyond traditional Game Theory
The experience of traditional Game Theory is rather restrictive, in that severe

assumptions are made on the rational behaviour of individuals, the role of the
environment where they act, the nature of the information they process to take
decisions. Rather, realistic problems often involves agents who are not rational,
are extremely heterogeneous, act in a changing and inhomogeneous environment,
interact through non trivial topologies and receive different and noisy informa-
tion. To deal with this sort of systems, one has to relax specific prescriptions on
agents or environment properties, and rather adopt random variables to model
their variety in time and/or space (this, for example, is what has been partially
done in Game Theory to deal with Incomplete Information). The analysis of
these models become of course much more complex, especially when the number
of agents is large, and new tools are needed to treat the presence of stochas-
tic variables. An important help in this direction comes from the experience
gained in Physics in the last thirty years. Indeed, systems of interacting units
in presence of disorder are an old problem for which Statistical Mechanics has
developed some very powerful techniques. Neural Networks and Random Opti-
mization Algorithms are just two well known examples where these techniques
have been successfully applied. More recently, lot of interest within this per-
spective has been devoted to Competitive Heterogeneous Agents with inductive
reasoning. Starting from the first attempts of the Santa Fe market model (Palmer
et al., 1994), to simpler and more focused problems, there is now a wide and
increasing literature in the econophysics community that can be regarded as a
starting point for further research (see, for example Farmer, 1999). Many of
the studied examples wish to ultimately refer to the reality of financial markets
(Bouchaud et al., 2001; Giardina and Bouchaud, 2003), or systems with global
constraints (as the Minority Game problem (Challet and Zhang, 1998; Cavagna,
1999; Challet et al., 2000), however their structure can be easily modified to deal
with systems with a non-market interaction (i.e. systems where agents do not
simply interact through a global quantity as the price), as most of social and
biological systems are (Glaeser and Scheinkman, 2000).

Modified Evolutionary Games
In general terms, the typical structure of these modified evolutionary games

consists in a network of interacting agents endowed with heterogeneous evolving
strategies of action. The choice mechanism of agents is specified via appropriate
utility (reward) functions and encompass adaptive behaviour through learning.
Agents may interact among themselves (directly or indirectly) and with the en-
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vironment, and receive information on specific issues which they then process as
input for their decisions. As a result of individual actions, the system exhibits a
certain collective behaviour whose specific properties depend on the kind of the
adopted choice mechanism and interaction patterns. Such a collection of inter-
acting agents may approach a dynamical stationary state with different degrees
of coordination, or rather keep evolving on cycles or more complicated dynami-
cal patterns; it may reach some kind of equilibrium state - in the Game Theory
(Nash) sense or in a more robust way; it may exhibit self-organization or not.
Within this context, many different and specific questions can be addressed.
How the choice mechanism determines the qualitative system’s behaviour? One
can start with a set of fixed random possible strategies of action per agent and
progressively introduce more refined measures of performance, allow for mixed
rather than pure strategies, allow for perturbations in the strategy space, intro-
duce selection by allowing the set of strategies to change in time, and so on up
to more complex models where each agent has a neural network to retrieve the
more convenient strategies. How the nature of the interactions influence global
and individual performances? Agents may interact directly or through global
constraints, they may respond to competitive or socializing instances, they may
feel exogenous fields or not. What is the role of the network topology ? This
question is very much related to the previous one, indeed when assuming that
agents interact among themselves we need to specify not only the nature of
the interaction, but also how it affects the individual agents: each agent may
interact with all the others (fully-connected topology), or with just a few of
them; the interacting agents can be chosen at random (random graph topology),
they can be located in nearby position in space (3-d nearest neighbour topol-
ogy) or interact on a more specific network structure. Obviously the network
topology very much influences the correlations among agents, clustering proper-
ties and crowd effects. Also, in dynamical terms it affects crucially the speed of
information flow through the system (see also Network Theory section below).
At a more sophisticated level one could imagine to extend these techniques for
evolutionary language games. In most of the literature on conflict-cooperation
in both animal and human societies (e.g., behavioural ecology, economy), the
important question of the characteristics of communication among interacting
agents is not analysed. How communication may be shaped in relation to its
function (to prevent conflict, to identify cheaters, to diffuse reputations) is one
of the essential questions for which game theory based approaches may provide
an answer. Game theory might also be relevant to develop theoretical models
that allow us to prove whether certain behaviours by embodied communicating
agents effectively lead to shared communication systems or not and under what
conditions this can be maintained and complexify.

12.3.2 Information and Optimisation Theory

At the end of 40s C. E. Shannon, in two fundamental works (Shannon and
Weaver, 1962) faced the problem of an efficient transmission of messages laying
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the foundations of a mathematical theory of communication. Information The-
ory has since then acquired a leading role in such areas as computer science,
cryptography, biology and physics (Zurek, 1990). One of the most important
contributions of Information Theory is the discovery that the amount of infor-
mation contained in a message can be measured in an objective way: the tool for
this is the concept of entropy. In Information Theory, in fact, the word “infor-
mation” acquires a very precise meaning, namely the “entropy” of the string. In
a sense, entropy measures the surprise the source emitting the messages can give
us. Suppose the surprise one feels upon learning that an event E has occurred
depends only on the probability of E. If the event occurred with probability 1
(certainty) our surprise at its occurrence would be zero. On the other hand if the
probability of occurrence of the event E was quite small our surprise would be
proportionally larger. For a single event occurring with probability p the degree
of surprise is proportional to − log p. For a generic source the so-called Shannon
entropy gives, at the same time, both the number of bits per symbol that are
necessary to codify each one of the (long) sequences emitted by the source and
the rate of growth of their number with the length of the sequence. It is inter-
esting to recall the deep relations linking the compressibility and predictability
of a sequence of symbols to the entropy (of the source) or to the Algorithmic
Complexity of the sequence itself. Let us consider, without loss of generality, the
sequences of characters representing English texts. The entropy of the English
language can be defined as the minimum number of bits per character necessary
to encode an ideally infinite message written in English. In order to estimate this
quantity one should be able to subtract the unavoidable redundancy that comes
always along with any linguistic message. The redundancy can also be seen as
the number of constraints (for instance lexical or grammatical rules) imposed on
the English text. For example the fact that a q must always be followed by a u or
the impossibility to have two subsequent h are dependencies that make the En-
glish language more redundant. Rules of grammar, parts of speech, and the fact
that we cannot make up words make English redundant as well. Redundancy is
actually beneficial in order to make the message transmission efficient in noisy
conditions or when only part of a message comes across. For example if one
hears ”Turn fo th lef!”, one can make a fairly good guess as to what the speaker
meant. Redundancy makes then language more predictable. Imagine watching
a sequence of symbols emitted by on a ticker tape. The question one could ask
is how much information will be added by the next symbol si once one knows
already the sequence s1, ..., si−1 . How much information will be gained upon
seeing i s fixes also the amount of surprise we experience. An extreme surprise
will convey large information, while if one can reliably predict the next symbol
from context, there will be no surprise and the information gain will be low. The
entropy will be highest when you know least about the next symbol, and lowest
when you know most.

Information Theory and Language

Except very recent studies (see for instance Plotkin and Nowak, 2000) the
connection between Information Theory and language or communication evo-
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lution has been mostly disregarded. This project aims to bridge this gap since
the partners involved believe Information Theory could give a very important
contribution in several directions. Information Theory allows thus for a quan-
titative measure of the information content through concepts like entropy and
Algorithmic Complexity or more sophisticated measures like relative entropy or
mutual entropy. In a world in which new information is generated constantly
and only progressively and partially represented explicitly, Information The-
ory can then provide with new measures of information content and information
growth. Moreover Information Theory can give important contributions in learn-
ing phenomena, either vertical learning (from a source) or horizontal learning
(from other agents, i.e. mutual), providing with objective measures of how the
learning process evolves. Last but not the least Information Theory can play an
important role in problems of communication optimisation. Most of the opti-
misation approaches adopt a static point of view, neglecting the link between
the behavioural mechanisms of the agents and optimality. It is then important
to analyse and clarify this link between the individual algorithms processing
information and governing the flow of information and the efficiency of the col-
lective dynamics. Finally, information theory can also be relevant to identify the
properties of media that enable them to become carriers of information.

12.3.3 Population dynamics

Communicating embodied agents cooperate to achieve a task. Complex systems
research can help to analyse the relationship between the characteristics of the
communication system, the dynamics of the group, and the characteristics of
the task to be performed, and can propose a taxonomy of the dynamics of col-
lective activities. Interacting agents influencing each other’s behaviour are by
definition coupled non-linear dynamical systems. Over the past decade, research
has been conducted in such systems from a complexity point of view and the
project partners believe that these results could yield basic methods and tech-
niques for studying the interactive foundation on which communication can be
built. A crucial problem in modeling dynamics of embodied agents relies in an
appropriate description of the environment properties. Often the environment
presents features which change in space and time and that heavily influence
the population behaviour. To describe such situations useful insights and tech-
niques can be drawn from the wide literature in Statistical Mechanics on surface
growth and diffusion problems. Indeed the connection between population dy-
namics problems and diffusion/growth problems is direct, if not trivial. The
research on stochastic growth and anomalous diffusion has dominated the Sta-
tistical Physics of the last years (Bouchaud and Georges, 1990; Halpin-Healey
and Zhang, 1995), and can be directly used to deal with problems of biologi-
cal or social origin where the presence of unknown parameters is relevant. The
basic idea is that inhomogeneities in environment properties, or fluctuations in
the growth/death rate can heavily affect the evolution of a population: regions
of favorable conditions attract individuals and favor their wealth determining
localization in space, while for example external conditions variable in time may
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change reproduction rates. The existence of stable fixed points of the dynamics,
i.e. stationary states for the population, and the way in which the population
diffuse in space and time, are subtle problems of difficult analysis. Some interest-
ing attempts have been performed in biological context (Dahmen et al., 1999)
and diffusion problems (Giardina et al., 2001) and could be fruitfully extended
to more specific problems. The project partners believe that these results could
yield basic methods and techniques for studying the interactive foundation on
which communication can be built.

12.3.4 Network and patterns

Communities of interacting and communicating agents create dynamically evolv-
ing network topologies. It is of great importance to use the techniques recently
developed in network theory to be able to describe and track these networks,
to study the conditions under which they form and collapse, and the conditions
and consequences of different interaction topologies. Networks of interactions in
ECAgents might be very different from simple ordered (Euclidean) lattices. The
Internet is only the most conspicuous example of this kind of complex structures.
While it is immediately clear that such networks can not, even approximately,
be described in terms of ordered lattices, it has been recognized recently that
their topological properties are very different also from those of random graphs,
for which a well-established mathematical theory exists (Bollobás, 1985). The
understanding of the properties of complex networks is currently the goal of an
extremely active field (Albert and Barabasi, 2001; Newman, 2003). The emerg-
ing picture is that complex networks are in some sense intermediate between
random graphs and Euclidean structures. In particular, many networks exhibit
a small average distance between vertices (small-world effect), typical of random
graphs, together with local clustering properties, that are typical of ordered lat-
tices (Watts and Strogatz, 1998). Moreover, many social networks are scale-free
(Barabási and Albert, 1999), in the sense that they exhibit a power-law dis-
tribution of the degree (i. e. the number of connections of each vertex). These
new and nontrivial properties have profound implications for physical or social
processes occurring on complex networks. Traditional concepts and tools for the
study of such processes must be adapted, and in some cases completely refor-
mulated, when dealing with complex networks. A further important issue in
this context is the observation that in growing networks the local character of
decisions introduce sub-optimal features. As an example, information will flow
in sub-optimal ways or the network will be particularly fragile against the re-
moval of some key nodes. Since agents make decisions based on local knowledge,
the global performance of a net will be typically lower than optimal. Future
models and evolutionary algorithms should incorporate top-down information
that might help change local decisions in order to avoid falling into sub-optimal
global performance. Transitions from a suboptimal to an optimal organization
can be sharp (Ferrer and Sole, 2003) and thus understanding of the intrinsic
nonlinearities arising in communicating agents are necessary.
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12.4 Challenges

Given the framework depicted and the ensemble of knowledges and techniques
one can borrow from the experience of the study of complex systems, it is possible
to formulate a certain number of open questions. A first account of them can be
summarized as follows:

Challenge a) Predicting whether a given population of size Nag will
eventually reach, within a finite time T , maximal communicative success
S to express a given set of meanings M and linguistic and ontological
coherence and optimality, given a specific set of behavioral rules adopted
by each agent.

Challenge b) Identifying and understanding the laws governing the
scaling between population size Nag, the size of meaning set M and the
time T for reaching communicative success and give an explanation for
this law in terms of the microscopic dynamics.

Challenge c) Identifying the dependency between the flow-rate of the
population ρNag and the flow-rate of the meaning set ρM and the main-
tenance of communicative success S, coherence and optimality.

Challenge d) Showing the dependency between the flow-rate of the
meaning space ρM and the maintenance of communicative success S,
coherence and optimality.

Challenge e) Exploring the role of the network topology on the estab-
lishment of a successful, coherent and optimal communication system.

Challenge f) Exploring the interplay between the network topology and
the semiotic dynamics. In particular one is interested in understanding
what type of network structures emerges when a population of agents
tries to establish a successful, coherent and optimal communication sys-
tem.

It is evident how the questions posed are at this stage very general and in
some cases very fuzzy. It will thus be important, as our knowledge will progress,
to clarify and better focus the questions, in order to make the theoretical con-
tribution as effective as possible.
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Applications





Application Opportunities for ECAgents

Lars Erik Holmquist, Frederic Kaplan, Luc Steels

Viktoria Institute and Sony CSL Paris

13.1 Introduction

Technologies, models and concepts created in the ECAgents project can have
great potential to enable novel applications. As a multitude of devices with ad-
vanced computing and communication capabilities become available for everyday
users, the concept of physically embodied agents that communicate and evolve
through interactions between themselves and users should be applicable to many
application areas.

However, developing new applications is not unproblematic. The step from
research result to useful application is often large, especially in a high-risk re-
search project like ECAgents. Therefore, there is need for a systematic effort to
turn theoretical project results into application concepts that have relevance for
the real world. Furthermore, in order to evaluate such concepts, it is also nec-
essary to create application prototypes that can be tested in realistic settings.
While several innovative design methods have been presented in recent years,
in particular in the interaction design research community (e.g. Buchenau and
Suri, 2000; Gaver and Martin, 2000), it is not always clear how they can be
adapted to other areas. Therefore we need to pay particular attention to how
existing methods can be applied to the project, and what novel methods can be
developed that suit our particular area.

At present, there are as far as we can see no existing products that would
fully fit the definition of an “ECAgent application”, i.e. a system incorporat-
ing embodied communication between a collection of autnomous agents that
evolve their own language. Currently, the concepts explored in the project are
still too advanced to be the basis for a commercial system. This will change,
just like many earlier concepts in artifical intelligence have moved from research
prototypes to everyday applications. But while there are no “true” ECAgents
applications, there are several products that exhibit properties that can be useful
to study as a source of inspiration and reference. In particular, domestic robots
are becoming more and more advanced, both in the form of toys (like the popular
Robosapien humanoid robot) or other devices (e.g. houscleaning robots such as
the Trilobite automatic hoover). There is therefore need for a systematic inves-
tigation into the properties of existing and future products based on embodied
interaction and evolving communication.

It is no probably coincidence that many of the existing “ECAgent-like” sys-
tems we will discuss fall into the area of entertainment. We have found no rele-
vant applications yet deployed in areas such as helthcare, public safety, logistics,
telematics, etc. A reason could be the following: the same properties that make



autonomic and evolving systems unsuitable for certain applications - the unpre-
dictable nature of the results, the need for a long training period, etc. - is just
what makes them suitable for entertainment. To stay interesting, entertainment
applications require constant change and stimulation, whereas safety-critical ap-
plications must be predictable and reliable, something which can take a long time
and be difficult to achieve in an evolving system. For instance, while we would
for instance probably never accept unpredictable responses from the steering
wheel of our car, unexpected and autnomous behaviour can on the other hand
be desirable in an electronic agent that embodied in a doll for children. How-
ever, as the concepts and technologies in the ECAgent projects continue to be
developed, we may see a situation where the results can be applied to a much
broader area of applications.

The following section of the White Paper will first discuss the requirements
for development methods that take into account the unique properties of ECA-
gents, and suggest one such method, user-driven innovation. We will then discuss
how some existing products can be used as “good examples” for how to design
interactive applications based on ECAgents results. Finally, a number of poten-
tial applications and application areas will be discussed, including robot-based
applications and peer-to-peer networking.

13.2 Development methods

13.2.1 Approaches

To be relevant outside the research lab, new technologies must be compelling
and useful for others than the developers themselves. The last twenty years
has seen user-oriented system development become an important component
in computer science. Originally, human-computer interaction research primarily
concerned the post-hoc evaluation of computer systems, i.e., the systematic in-
vestigation of how efficient a system or interface is when in use. However, it soon
became apparent that as a complement to evaluation, users can also be a valu-
able resource before the construction of a system has even begun. For instance,
participatory design was introduced as a way to involve users as co-designers
at a very early stage when developing a system (Greenbaum and Kyng, 1991).
Here, mock-ups and scenarios are often used in a dialogue with users to better
understand the real-world implications of a proposed system. Another popular
approach has been to use ethnographically inspired methods, such as participant
observation (e.g. MacKay, 1999). Here, researchers observe and document the
current work practices of a group of users, taking this information into consid-
eration when creating a new system. This can help to ensure that the system is
anchored in an existing work practice, rather than imposing a completely new
way of working.

However, a major issue with user-centred methods is that they often fail to
take into account novel properties of new technologies. When the user require-
ments, rather than innovative ideas and theories, are the main shaper of an
application, the results may be useful but often fail to introduce novel concepts
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or take advantage of the latest avances in technology. Therefore we suggest a new
approach, user-driven innovation (Holmquist, 2004). This is closest in spirit to
participatory design, in that potential users are regarded as a resource in the
design process. However, there are some important differences. One is that in
this approach projects are often already well on their way in the prototype stage
when we start to involve users. We are interested in cutting-edge technology, and
in many cases, the initial idea for a project will be based on technical possibilities
rather than any particular user need.

Furthermore, unlike participatory design and most ethnographic approaches,
user-driven innovation does not necessarily regard the groups that are engaged
in the process as the final users of a proposed system. Instead they are seen
as a springboard that will help to push the technical ideas further. For this
reason, there is particular interest in finding users that have very specialized
and perhaps peculiar requirements. The belief is that such specialized groups are
more likely to put technology in a new light, thus giving rise to interesting ideas.
We can think of them as “extreme users”, an analogue to the concept of “extreme
characters”, which are fictional persona that are created to generate ideas in
interaction design (Djajadiningrat et al., 2000). As with extreme characters, the
purpose is to inspire novel ideas that can be generalized for a larger audience.
Often, insights gained from working with specialized users can push the original
technology much further than would otherwise have been the case.

13.2.2 Challenges

The main challenge for ECAgents is to find methods that marry the results in the
project with real-world application domains. The various existing approaches,
such as ethnographically inspired design and participative design, have been
developed for other domains and can not be directly applied to the project.
However, elements of such methods can be used to increase the chance of gen-
erating high-quality and interesting applications, since purely technology-driven
application development is not likely to succeed. User-driven innovation is an
attempt to create a sort of hybrid between technology-driven development and
user-oriented design. It is however in no way the last word in this department,
and it may be necessary to adopt or develop other methods to achieve the goals
of the project.

The user-driven innovation method has already been succesfully applied in
several projects (e.g. context aware photography (Ljungblad et al., 2004) and
smart noticeboards (Helin et al.)). In the ECAgents project, we are currently
applying it to two areas: music distribution in mobile peer-to-peer networks,
and robot applications for everyday use. However, the method is still fairly new
and under development. It is an open issue how well we will succeed in creating
application concepts and demonstrators that combine relevance for a real-world
user-group with advanced concepts from the project. This will be further ex-
plored in the coming stages of the project.
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13.3 Learning from existing applications

13.3.1 Overview of existing products

While there are no “true” ECAgent applications that we know of, by laxing
the definition slightly we can find many products that have properties that are
of interest in the project. While these products may not for instance evolve
communication languages in the sense explored in the project, to the user they
do exhibit some degree of autonomy and communication capabilities. This au-
tonomy is usually only simulated but in some case it is in fact based on quite
advanced concepts in AI and artificial life. Therefore, to gain inspiration for fu-
ture ECAgents applications, it is interesting to briefly examine a few categories
of existing products.

An early example that caught the attention of many consumers was the
Tamagotchi, launched by the Japanese company Bandai in 1996. It sold over 40
million units world-wide. The Tamagotchi was a form of small-scale artifical life
that has to be nurtured by the user. The agent was graphically embodied on a
small handheld device with a screen and a few buttons. Only by “feeding” and
“playing” with the agent could it be kept alive and happy - if it was ignored
it would whither and die. The algorithms in the Tamagotchi were very basic,
and the creature and its behaviour were derived from a series of simple rules.
However, the rules were cleverly designed in such a way to continually generate
interest despite there being no real evolution involved. In 2004, a networked
version of the Tamagotchi was introduced: Tamagotchi Connection. This allows
Tamagotchi creatures to communicate and even “mate”.

A similar toy but physically embodied as a furry doll was the Furby, released
by Tiger Electronics in 1998. It sold over 10 million units in 1999 alone. In
a similar way to the Tamagotchi, the Furby requires the user’s attention to
thrive. But unlike the virtual pet it is actually embodied in the real world, using
sensors (microphone, light sensor, accelerometer, pressure sensors) and actuators
(a loudspeaker, and a step motor that gives it a large variety of exrpessions and
movements). It reacts to the users actions, and gives a good impression of being
aware of the world and responding to external events. Over time, it seemingly
“develops” from an infant to a grown up. It can also communicate with other
Furbys using infrared light. However, as with the Tamagotchi, no real evolution
or communication takes place; all movements and utterances are pre-recorded,
and the evolution follows a pre-programmed pattern. Still, for the uninitated,
the Furby gives a very good impression of being an autnomous agent with its
own goals and agendas - at least over a shorter time span.

Personal computer games have often made use of advances in artificial intel-
ligence and artificial life. An interesting example is Creatures, released in 1996
by Cyberlife. It allowed users to breed and train evolving artifical life forms,
based on bilogical metaphors. The creatures are embodied as a form of carton
characters who live in a richly detailed graphical world, with simulated physics
and eco-system. The player does not directly control the creature but rather
shapes its environment and gives it indirect commands, observing it as it learns
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and develops over time. Users can even exchange artficial DNA over the inter-
net to create new species. The game was first considered difficult to market but
was in fact a surprise hit and sold more than 2 million copies. The technology
behind the game (a third version was recently released) is probably the most
advanced artificial life system available in a consumer product. Another product
that used similar technologies in a more action-oriented framework is Evolva
from Computer Artworks, released in 2000.

A similar genre of computer games has been the management simulation,
which allows players to control a simulated virtual world, e.g. a city in Sim City
or an ant farm in Sim Ant. The most popular such game is The Sims, released
in 2000 by Electronic Arts. The first version had shipped a total 6.3 million
copies in March 2002, making it the best selling computer game of all time. The
Sims can be considered a “people simulator”, because the focus is on simulated
individual agents, who resemble real humans and live ordinary lives in a 3D
virtual environment. The agents are fully autonomous and act out their own
goals and desires in response to changes in the environment. The game can be
considered a social simulation, since much of it revolves around the social life
and activities of the agents. The simulated humans have an active social and
professional life, meet and entertain, have careers and hobbies and so on. The
latest version, released in 2004, is even more complex and is probably the most
advanced agent-oriented technology available for consumer use.

Another recent trend is that of entertainment robots. While Sony’s AIBO
robot dog has been geared mostly towards hobbyists, and the humanoid QRIO
is still to expensive to sell to consumers, recent advances indicate robots are
now becoming consumer products. Robosapien is a humanoid consumer robot
manufactured by Wowee and released in late 2004. It ha an innovative balance
system that allows it to walk efficiently, and while not displaying any advanced
intelligence it is claimed to have an “interactive reflex system” that allows it to
act on external input. In reality, the robot is basically remote-controlled and can
be pre-programmed to perform a sequence of moves. The “reflex system” is a
feedback loop that gives it rudimentary capabilities to react to changes in the
envrionment, for instance to avoid falling over. Although it exhibits even less
“ECAgent” qualities than several of the other examples, it is interesting in that
it shows that locomotive robots can now be manufactured at an affordable price,
and in that it has introduced the concept of a personal robot as a viable product
concept.

13.3.2 Lessons learned

The above has been a brief overview of existing applications that in some way
exhibit autonomous actions and evolving behaviour (although in several cases
it is only an illusion created by clever design and has little to do with “real”
artificial intelligence or A-life). What is common for them all is that they are very
commercially successful, among the most succesful in their respective product
category. However, what is also common is the tendency for “fads” - Tamagotchi
and Furby in particular are examples of trends which were immensely popular
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for a short period and then lost interest in the public eye. What can we learn
from these examples?

One important lesson is that there is a real public interest for toys and
games that exhibit evolutionary behaviour. The Sims and Creatures are based
on complex algorithms that would not be out of place in many research projects.
There is certainly a form of “real” evolution going on in both these examples,
although perhaps not so profound as for instance the development of a new
language. But in order to turn these concepts into products, the makers have
managed to hide the complexity in an attractive form, and translate it into
metaphors that people can understand: those of social interactions and pets,
respectively.

Another lesson is that autonomous behaviour can be faked - for a limited
time. Both the Furby and Tamagotchi were very popular when introduced. But
the public eventually lost interest, possibly because the “tricks” the designers
used to fake autnomous behaviour and evolution became evident after spending
more time with the product. It is difficult to know if the products would have
stayed popular longer if they had been constructed so that they somehow con-
tinued to evolve beyond the pre-programmed patterns. At the times they were
introdcued, available technology simply did not allow this kind of evolution in
an affordable consumer product.

Finally, the Robosapien, while perhaps the least interesting in terms of be-
haviour, shows that the concept of embodied agents in the form of robots is now
a viable consumer market. But only if they can be coupled with more interesting
behaviour, will they stand a chance of being more than a “fad” and keep the
public interest for an extended period of time.

13.3.3 Challenges

The examples above are somewhat limited in that they are taken from the enter-
tainment domain. They will need to be studied further and the lessons learned
should be generalized to other domains. There is also a need to explore other
examples where these kind of properties have found their way into real-world
products, outside the entertainment domain. Even though such examples are
harder to find, it is possible that there are some relevant products already in
existence that we may learn from.

For the development of ECAgents applications, the challenge is to create
products that have aspects of “real” evolutionary behaviour, yet present it in
a form that makes it attractive for the general consumer. This can be greatly
helped by charting what has made existing applications succesful - or unsuc-
cesful. It can also be valuable to bring in the efforts at instituions where robot
applications are studied in a context that includes aspects of design and social
science, e.g. the Project on People and Robots at Carnegie Mellon University.
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13.4 Potential application areas

In the following, we will discuss potential applications for ECAgents that will
be explored in the project. They include:

– Robotic applications, where agents are embodied in physical form as aut-
nomous robots. Potential areas incvlude service robots and entertainment
robots

– Ubiquitous applications, where agents can move between different forms of
physical embodiement. Here, agents can exist on devices such as PDA:s and
digital cameras

– Peer-to-peer applications, such as music sharing, where the problem is se-
mantic interoperability. Here, it is possible to evolve a common ontology
based on user actions

13.4.1 Robotic Applications

Robots that develop communication systems among themselves Sev-
eral experiments with robots have successfully demonstrated that shared com-
munication systems could be negotiated between autonomous embodied agents
(Steels and Kaplan, 1999a,b, 2002; Steels, 1999; Vogt, 2000; Kaplan, 2001). The
communication systems of these robots are grounded in reality. This means that
communication conventions get associated with aspects of the robots’ sensori-
motor environment. The robots have no direct access to the “meanings” used
by the other robots, but they gradually bootstrap know-how for using commu-
nication conventions in order to have other robots performed particular actions.
Some experiments showed that it is not even necessary to assume that robots
share a prior repertoire of common concepts. Instead, they could build up their
conceptual repertoire in a co-evolutionary process simultaneously with the con-
struction of their communication system. These technologies permit new robotic
applications where population of robots constructed shared communication sys-
tems without the need of a central coordinator.

– Robots in unknown remote environments. Technologies for bootstrap-
ping shared communication systems are adapted to situations where a group
of robots have to agree on a convention system to communicate in an un-
known environment. These techniques are particularly interesting in cases
where human intervention is difficult (e.g. a colony of planetary robots). In
such cases, robots could develop their own ontology and associated commu-
nication conventions in order to manage to coordinate their actions.

– Cooperating robots. Collection of simple cooperating robots can poten-
tially solve problems that a single robot cannot solve and/or lead to more
robust and efficient solutions than systems based on a single robot. Indeed,
collective robotics in gathering an increasing interest in the last few years
(see also section by Floreano and Keller). Progresses in methods and techolo-
gies that might allow a team of robots to effectively coordinate and coop-
erate through indirect or direct form of communication might mave huge
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application potentials (e.g. in tasks such us retrival of humans buried un-
der collapsed buildings, exploration and monitoring of dangerous area, and
many other activities that require coordination and cooperation).

– Populations of heterogeneous robots. Several techniques currently un-
der development do not assume that robots have exactly the same senso-
rimotor apparatus or control architecture. This means that populations of
heterogeneous robots (i.e. different models of autonomous robots) can in
some cases still manage to agree on an efficient communication system to
interact with one another.

Robots that develop a communication system with a user Another line
of applications concerns robots that develop autonomously a communication
system with a user. Several achievements were obtained with systems capa-
ble of learning complex associations between linguistic events (word, sentences)
and perceptual ones (images, videos, tactile information, etc.) (e.g. Roy and
Pentland, 2002; Siskind, 2001; Cangelosi and Parisi, 2004; Banard et al., 2003;
Dominey, 2003; Steels and Baillie, 2003). However, complex issues arise when
these techniques are applied to mobile autonomous robots (Steels and Kaplan,
2000b; Kaplan et al., 2002). It is clear that several challenges remain to be
addressed in order to successfully build systems capable of developing all the
necessary prerequisites enabling complex human-robot communication (see for
instance Kaplan and Hafner (2004) for a survey of the challenges related to joint
attention), but progress is made in these directions. Ethical and cultural issues
must also be taken into account when designing new usages for these technolo-
gies (Kaplan, 2004). Two kinds of application targets can be foreseen for these
techniques.

– Service robot companions. Service robot companion are designed to
enhance and extend the individuals own ability to perform crucial tasks.
Robotic aids should in general complement the abilities of the user and can,
for instance, help people live better lives as they get older or help disabled
individuals. It is crucial that such robots are easy to use and adaptive. An
increasing number of systems permits the use of human speech for control.
However, these systems are only reliable for rather specific domains. Efficient
interactions with service robot companions are likely to need more adapt-
able techniques. Researches on robots capable of autonomously developing
communication systems with a user offer new perspectives in such a context.
Instead of the user adapting to a predefined set of conventional commands,
human and robot could mutually converge on a shared set of communica-
tion conventions. Moreover, such communication systems will continuously
be adapted in order to be as adjusted as possible to the individuals current
needs.

– Entertainment robots. In contrast with robot companions, entertainment
robots are not necessarily useful devices but are designed to be interesting for
their own sake (Fujita et al., 2000; Kusahara, 2000; Kaplan, 2005). In order
to stay interesting for a long time, entertainment robots must autonomously
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develop and learn. Technologies for developing a shared communication sys-
tem between the user and the robot are well adapted to maintain such a
continuously renewed interest in the interaction (see (Kaplan, 2005; Daut-
enhahn, 1999) for a longer development of this argument).

13.4.2 Ubiquitous ECAgents

It is always possible to separate a software part of an ECAgent, in which adapta-
tion and learning take place, from a hardware part, which remains the same. In
particular, a robot can be seen as a software agent controlling a physical body.
Therefore, using wireless network connections, a software agent can transfer itself
between two physical bodies. The term teleportation is used when the bodies are
identical (McIntyre et al., 1999). When the software agent is transfered between
two non-identical bodies (e.g. a personal robot and PDA), the term metamorpho-
sis can be used. This kind of transfer is intrinsically more complex and requires
a set of specific technological innovations. Kaplan and Oudeyer have presented
an algorithm for reusing object prototypes learned in one body, in another one
with similar sensory spaces. This idea was illustrated with the example of a
software agent that could engage in verbal interaction when embodied in an
robot and reuse the grounded vocabulary it has learned when transfered to a
more simple robotic body (Kaplan and Oudeyer, 2000). However, most of the
technology for doing this kind of transfer in a more general context remains to
be developped. A central question is how can complex skills such as navigation
or grasping developped for one body be recruited and adapted to another one?
The easiest thing is to rebuild a new categorization of the world each time the
agent changes body. But this is inefficient. Solutions must be found for agents
to adapt to the specificity of their new body, reusing as much as they can of
what they previously developped. One most interesting experiment in this per-
spective has been conducted by Floreano and Mondada (1998). They study the
possibility of running incremental cross-platform evolution. An agent which has
evolved navigation techniques in a Khepera body is then transfered in a Koala
(a larger robot), and adapts in order to continue to use its techniques. Another
interesting issue is the possibility of doing part of the learning for a robot in
a virtual world. There have been several isolated attempts to experiment on
the transfer between real and virtual worlds. Michel (1998) showed how virtual
robots can develop skills both in a realistic virtual world and in the body of
Khepera robots. Several researchers have conducted experiments in simulated
and real environment, and compared their results (Billard et al., 1999; Martinoli
et al., 1999). These experiments show that part of the training of a robot could
be done first in a simulated world, before being embodied in a physical robot.
These technologies offer new interesting application perspectives.

– Ubiquitous robotics: Using teleportation and metamorphosis, software
agent controlling ECDevices can manage to change body in order to find the
most appropriate form for any given situation. A robot is not an easily trans-
portable object compared to a PDA or a digital camera. Allowing software
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agents to “dock” into various kind of ECDevices permits long term interac-
tion with human as a companion software agent can follow its owner even
when he or she leaves home. From the point of the view of the agent’s devel-
opment, the number of learning situations increases consequently. Agents can
learn through a variety of real world situated interaction, or even embodied
in a virtual character inside a video game.

– Large-scale collective dynamics: Teleportation technologies permit to
consider the possibility of the emergence of collective dynamics resulting in
the interaction between a large number of software agents. By interacting
not only with humans, but also with one another, shared convention systems
can emerge adapted to both human-robot and robot-robot interactions.

13.4.3 Emergent Semantics in peer-to-peer networks

The mechanisms being developed and studied in the ECAgent projects have
the potential to solve an important problem in current distributed information
technology, namely the exchange of information in peer-to-peer networks, more
specifically the problem of semantic interoperability. Instead of imposing a uni-
versal pre-defined ontology over universally defined conceptual schemata, the
techniques of emergent ontologies and languages potentially enable each agent
to develop a repertoire of grounded categories and labels for these categories and
negotiate their use and semantics with other agents. The communication system
as well as its semantics is hence emergent and adaptive instead of predefined,
leading to a Self-organisation Approach to Semantic Interoperability (SASI).

Semantic Interoperability An information system contains a collection of
data and possibly a set of meta-data structured according to some conceptual
schema. To enable user interaction, an information system typically allows a user
to taxonomically structure the data according to her own named categories so
that she can retrieve items through these names. Typical examples of informa-
tion systems are: (1) The ‘favored’ web pages of a user organised in bookmark
folders. The data consists of the URLs to the web pages and the taxonomy is
the hierarchy of named folders that the user can browse through to retrieve a
web page. The taxonomy implicitly defines a categorisation of web pages by the
user. (2) A set of music files maintained by a user, organised as a series of named
hierarchical playlists. (3) A set of images organised according to specific inter-
ests of the user, e.g. a series of medical images organised along pathologies, or
a series of paintings organised along periods, genres, and painters. (4) A set of
scientific papers organised along specific research themes.

The human user, further called the owner of the information system, controls
her information system by adding data and imposing structure on the data in the
form of taxonomies and giving names to the nodes in the taxonomy. Note that
the categorisations of the user implied by these taxonomies are based on private
cognitive processes which are not accessible to other users nor to information
systems. For example, a user may decide to put all the songs she likes in one
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folder and the ones she does not like in another. This categorisation decision is
completely subjective and can never be automated nor emulated by a machine.

We call the taxonomy created and maintained by the user the owner taxon-
omy. The names used in this taxonomy (which could be words or phrases) are
owner names. The taxonomy implies a particular way of categorisation (known
perhaps even only at an intuitive level by the owner) which is called the user
ontology. The user ontology is implicitly implied in the taxonomy but otherwise
not known.

A peer-to-peer information system consists of a collection of such informa-
tion systems. Each information system is owned and maintained by a different
user and assumed to operate independently of the others. The defining charac-
teristic of peer-to-peer information systems is that they allow direct information
exchange between peers without the need to go through a central server. Ex-
amples of peer-to-peer information systems are peer-to-peer music file sharing,
such as Napster or Gnutella, that are already used by millions of people today.
Similar sharing networks are growing for movies or game software. Also in the
domain of scientific data or educational materials, there are growing networks
of peer-to-peer shared systems (Nejdl et al., 2003).

In a peer-to-peer information system, the owner of one information system
typically queries directly another information system in order to obtain addi-
tional data. The information system of the querying peer is called the client and
the system providing information is called the server. For example, a web user
may want to query the bookmark folders of another user in order to find web
pages that may be of interest, a user may want to query the play lists of another
user in order to find music that might be of interest to her, a user may want to
query the image data base of another user in order to find images that relate to
her own interests, or a user who is looking for papers that are relevant to one
of the research topic she is investigating, might want to query the set of papers
stored by another user.

In the spirit of peer-to-peer information systems, any node can behave as
client or as server. Note that users communicate through the taxonomies with
which each owner has organised her data.

There are two key problems in peer-to-peer information exchange. The first
one is that the data and names used in the taxonomies of one peer (the client) are
typically different from those used by another peer (the server) and so the client’s
owner cannot know how to formulate the query nor can the server’s owner or the
server itself know how to respond if the query is not formulated according to its
taxonomy. This is a real problem for users of currently operational peer-to-peer
systems. For example, in a music file sharing network, users must try to guess
the titles of data and the meaning of names given to the folders and subfolders.

The second problem is that the conceptual schemata used for storing data
and meta-data in each information system may be very different, particularly if
the meta-data is itself open-ended. Even a simple incompatibility such as usage
of different languages can be a problem. For example, the client may have a
meta-datum ’country(Belgium)’ whereas the server may have ’pays(Belgique)’.
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Without semantic knowledge, information systems cannot know how the two
meta-data map onto each other, and so a client cannot simply formulate a query
for a server using his own meta-data.

Both problems are instances of the so called semantic interoperability prob-
lem.

Approaches One solution to semantic interoperability is to standardise. The
different users of a peer-to-peer network could all agree a priori to use the same
taxonomies to structure their data and to use the same conceptual schemata for
their data and meta-data. The owner names in the taxonomies can then act as
a shared communication protocol between peers. For example, all users could
agree to use the taxonomies of Yahoo for organising their data, and adopt the
names used by Yahoo (possibly with translations into different languages).

Unfortunately such a standardisation approach is unlikely to work for a tru-
ely open-ended peer-to-peer network in volatile domains like music file sharing,
medical images or scientific papers. As new topics and new kinds of data come
up all the time, styles shift, and interests of users diverge. There are legacy sys-
tems which should also be enabled to participate in a peer-to-peer network. It
is very hard to capture all this once and for all in a static ontology.

Alternatively, it is possible that each peer has its own local taxonomy, and
its own conceptual schema but that these are translated into a global ontology
and conceptual schema which is used for querying and information exchange and
thus exacts as an Interlingua between peers. The translations could be based on
defining as much as possible the semantics of the names in the taxonomies. For
example, if a user has a sub-folder in his music file system with songs by the
Beatles, then the semantics of the implied category is translated in a query over
meta-data: ’performed-by(TheBeatles)’. This query can then be used (possibly
after translation by a mediator) into a query over the meta-data of a peer.

This is the approach currently being explored by the Semantic Web initiative
(Berners-Lee et al., 2001), w.r.t. web information systems, and, more generally,
by ‘universal’ ontologies such as advocated by CYC or Wordnet (Lenat et al.,
1995). It has lead to extensive efforts to develop common ontologies, support sys-
tems for defining these ontologies, ways for mapping local schemas into global
schemas, and mechanisms to use ontologies in information retrieval, i.e. for map-
ping categories to data (Davies et al., 2002).

However a consensus is growing that this approach has several major draw-
backs (Aberer et al., 2004; Steels, 1997a) as well:

1. The semantic web which relies on universal ontologies just pushes the prob-
lem of semantic interoperability to another level. It still requires standardis-
ation based on universal ontologies. It is hard to imagine that a world-wide
consensus is reachable and enforcable in every domain of human activity for
which information systems are currently in use. Even in restricted domains
this is hard because of an increasingly interconnected global world.

2. Human activity and the information systems built for them are open systems.
They cannot be defined once and for all but must be adapted to new needs.
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3. Peer-to-peer information systems are distributed systems. There is no central
control point and so it is not possible to control them centrally.

4. Many information systems already exist and ways should be found to enable
their participation in peer-to-peer networks.

An alternative approach to semantic interoperability is to extend information
systems with components so that peers can develop and negotiate their own
communication protocols in interaction with the data world and the world of
human users. So the agents autonomously create an Interlingua which they can
each locally interpret. Just as in human natural languages, the consensus will
be for ever emergent, adaptive and local. This approach is one of the ways to
achieve emergent semantics and is the one that we see as major application area
for ECAgents.

The technical solutions that rely on techniques drawn from recent work
on language games for robot-robot and robot-human communication (Steels,
1998b), (Steels, 2003a), as further developed in the ECAgents project, have to
be expamaknded and changed to make them applicable to the current task. Ear-
lier work in this area has been reported in (Steels, 1997a) and (Avesani and
Agostini, 2003) but large-scale application has so far not yet been attempted.

In this approach, Semantic interoperability is seen as a coordination problem
between the world, information systems, and human users. A particular kind
of ‘semiotic dynamics’ is defined so that both the labels used in peer-to-peer
communication and the categories the agents use to interpret these labels be-
come aligned as a side-effect of peer-to-peer information exchange. The labels
used in information exchange as well as the semantics of the labels is emergent
and the conceptual schemata used for the meta-data in each peer are local and
extensable. We note that the Interlingua emerging through agent interactions
will never be static and may be locally specialised among a group of peers. The
categories defining the ontology of each agent are defined purely in terms of local
meta-data and so they are not uniform either.

Challenges At the moment the most basic technologies for achieving peer-to-
peer information exchange based on emergent semantics are available, at least for
certain domains. For example, for the domain of music, there is a high interest in
p2p exchange (so there is a potential ’market’), many algorithms exist to ground
descriptors into music sources and even for developing new categorisations in
order to discriminate based on evolutionary algorithms (Zils and Pachet, 2004),
and there is a high volume of potential data to be exchanged. Moreover this
domain is constantly ’on the move’ so that it is difficult to apply the classical
technique of pre-defined ontologies.

So the main challenge to be taken up in the ECAgents project is to construct
a viable demonstrator of this technology. This requires that all parts are techni-
cally pulled together in a single platform (e.g. networked mobile PC with music
players) and that a user community is identified that is willing to try out the
p2p exchange in this domain.
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13.5 Conclusion and challenges

Developing application concepts based on novel technologies and concepts is
difficult, but likelihood of success can be greatly increased by applying methods
from other fields, as well as making use of insights gained from the study of
existing products. The challenge for the remainder of the project is to develop
new application concepts in a way that makes them not just interesting from a
research point of view, but also viable product concepts that can have a genuine
interest for consumers. For this, it is necessary to apply the methods outlined
in section 2, and the lessons learned in section 3, to potential applications such
as those outlined in section 4. By doing this, we will achieve a true integration
of research advances and product development. This will mean that results in
the project have a chance of impacting not just the research world but society
as a whole, through the introduction of services and applications that would
otherwise not have existed.
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White Paper Concluding Chapter

Luc Steels

SONY Computer Science Laboratory - Paris

This chapter summarizes the common theoretical and methodological foun-
dations of the project and highlights the main challenges the ECAgents project
is focusing on.

14.1 Sociality and Communication

It is clear to anyone who has seriously studied communication from a scientific
point of view, that this is a very broad research subject in which contributions
from many different disciplines are relevant. The great value of the ECAgents
project is that it has managed to bring together several of the most relevant
disciplines, in particular the biological and cognitive science perspective on the
one hand, and the computer science and information technology perspective on
the other. The first perspective puts forward natural models, important issues,
and theoretical tools, the second one operational models, implementation tech-
nologies, and application domains.

Although there are many ways to structure the domain of communication,
the ECAgents project has adopted a biological perspective (chapter 2), making
a distinction between three types of communication, depending on the charac-
teristics of the agents involved:

– Communication among selfish agents. This is the most common situation in
animal communication. Each agent only cares about itself in a ruthless at-
tempt to propagate its genes. A consequence is that communication systems
are entirely automatic and genetically determined and/or highly costly to
avoid cheating. They are (analog) signaling systems rather than (discrete)
symbol-based communication systems.

– Communication among eusocial agents. This is also found in animal commu-
nication but only in eusocial groups such as social insects where individuals
largely share the same genes (kin selection). Communication systems arising
under such conditions also appear to be automatic and genetically evolved,
and they also qualify as signaling rather than symbol-based systems.

– Communication among social agents. This is the case for human beings, and
perhaps the only case in nature of symbol-based communication (chapter 7).
Although agents are not necessarily strongly genetically related, they have
nevertheless been able to transcend the Darwinian world to become funda-
mentally cooperative. Only under these conditions do we see the emergence
of symbol-based communication systems with the complexity of human nat-
ural languages.



There are many biological questions on how eusociality can evolve within
Darwinian assumptions and also how human-like social trusting agents can arise
under the same assumptions. These questions are fascinating but not central
to the ECAgents project. The ECAgents project rather concentrates on the
following two questions:

1. Given a particular type of sociality among agents (selfish/eusocial/social),
how can a communication system emerge and continue to function across
generations. Depending on the type of sociality we will get very differ-
ent approaches. (1) and (2) will rely mostly on genetic evolution of the
communication system and is studied in the project under the heading of
animal/animat-like communication (surveyed in part I of the white paper)
and (3) on cultural evolution, studied in the project under the heading of
human-like communication (surveyed in part II of the white paper).

2. What is the most appropriate communication system for a particular appli-
cation domain of IT, specifically how can the communication system remain
viable against operating and adversary conditions. As Hammerstein (see
chapter 6 on Game-theoretic approaches) points out, often IT-systems as-
sume social trusting conditions, whereas they do not always completely hold
as Darwinian conditions may resurface in the human world. An example is
spam where a benign system based on trust is exploited by spammers for
their own self-interest.

The remaining sections now provide more specific research topics which the
ECAgents project is tackling for each of these questions.

14.2 The Emergence of Communication Systems

The first key question addressed in the ECAgents project is how it is at all pos-
sible to see the emergence of a communication system in a group of embodied
agents. If we are ever going to translate this into technology, we need a mecha-
nistic theory, in other words we need a specification of the kinds of mechanisms
that agents need in order to see the emergence of a communication system. Proof
that the mechanisms work will have to come from computer simulations and/or
robotic experiments. The latter is particularly important because the project
focuses on embodied communication.

There are three different research streams, each time bringing together biol-
ogists/cognitive scientists and computer scientists/AI experts.

Signaling Systems among Selfish Agents

Signalling systems in selfish agents based on genetic techniques are the main
focus of attention of the Budapest (chapter 2) and Berlin group (see chapter 5)
and the Rome group (see chapter 3). The biologists focus on theoretical studies
in animal communication (such as the need to have costly signaling) and the
engineers focus on experiments in which communication systems might evolve
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under selfish agent conditions. As pointed out by Nolfi (chapter 3) and Hammer-
stein (chapter 5), the biggest challenge here is to counteract the lack of adaptive
benefit for the signaler and the conflict between individual and collective inter-
ests. Research is focusing on mechanisms and/or experimental conditions under
which this challenge might be overcome.

Signaling Systems in Eusocial Agents

Signaling systems in eusocial agents typically focus on helping large groups of
genetically strongly related agents to cooperate, for example in path formation or
nest building. The ECAgents research stream that takes this line of investigation
contains the Brussels partners (chapter 6), the Lausanne partner (chapter 4),
and the Rome partner (chapter 3). The work has focused on the one hand on
the study of natural systems and the development of mathematical tools for
analyzing under which conditions communication arises and can be sustained.
The communication systems in eusocial agents are almost all based on self-
organization based on a positive feedback loop that enforces random fluctuations,
so a key challenge taken up in the ECAgents project is to develop workable
mathematical tools to analyze such systems. On the other hand, work in this
line has focused on building robotic systems that work along the same principles,
the biggest challenge here is to find the precise mechanisms that cause self-
organization and to see how a viable communication system could evolve by
evolutionary programming.

Symbol-based Communication system in Social Agents

When agents are social, as in the case of human groups, the emergence of
symbol-based communication systems of high complexity becomes possible but
it is still a deep question how natural language like communication systems
then might arise. These questions are investigated in particular by the Budapest
partner from the (neuro)biological side (see chapter 11) and the Paris partner
(see chapter 10) from the side of computational and robotic models. There are
three main challenges which are all attacked in the ECAgents project.

As Tomasello and others have argued, the first prerequisite for symbol-based
communication is social cognition, which itself rests on joint attention and theory
of mind, i.e. the capacity to model the other, e.g. to see the situation from the
perspective of another agent. So the project is focusing on mechanistic models
of both processes, trying to come up with operational models how these are pos-
sible and why they would be used by social agents (see chapter 8). Once social
cognition is in place, various mechanisms come into play for the self-organization
of a symbol-based communication systems. The ECAgents project is ’biting the
bullet’ and developing operational models for the self-organization of commu-
nication media such as speech sounds (chapter 9), lexicons, the co-evolution of
categories and words, and the emergence of grammar (chapter 10). The third
prerequisite for symbol-based communication is that there is a neurobiological
substrate that can sustain the mechanisms thought to be crucial for language.
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Partners are taking up this challenge as well focusing on the recruitment theory
(or amoeba hypothesis) which puts a large emphasis on the brain’s plasticity to
dynamically configure a language faculty under the pressure of communication
(chapter 11).

14.3 Viability conditions for emergent communication
systems

When communication systems start to emerge and propagate in simulations it
is often not clear whether systems are viable and under what constraining con-
ditions. Even though there may be a large number of successful simulations,
it is still possible that results are an artefact of specific parameter settings, or
that they do not scale up to real world conditions. This is why the ECAgents
project puts a lot of emphasis on the challenge to develop tools for the analysis
of emergent communication systems. These tools will have to come from Com-
plex Systems Science, in particular game theory (chapter 5), dynamical systems
analysis (chapter 6), mean field approaches (chapter 12) and network analysis
(chapter 12). They should address such questions as: are there any powerlaws
relating population sizes with convergence.

14.4 Application areas

The ECAgents project is contributing to IT innovation by constantly seeking
potential spin-offs from the fundamental scientific understanding that is reached
by the project partners. This research into potential applications is particularly
carried out by the Goteborg and Paris partners (chapter 13). We deliberately do
not restrict ourselves to applications defined a priori, because then the project
would no longer be a research project but become a development project in which
much more technological focus is needed and serendipity becomes excluded. As
the research in communication is broad, there is also a broad set of imaginable
possible application domains (briefly surveyed in chapter 13) and early explo-
rations have already lead to three clear spin-offs. The first one is in the domain
of social tagging and emergent semantics. Collaboration between two ECAgents
partners (La Sapienza and Sony CSL) has lead to a new FET project TAGora
that applies technologies and analysis methods which arose in the context of
symbol-based communication systems to understand and orchestrate the emer-
gent semantics of social tagging sites. Collaboration between Viktoria Institute
and Sony CSL has lead to novel ideas for entertainment robotics. Finally col-
laboration between Barcelona and Sony CSL has lead to another NEST project
where insights from the study of emergent communication and language net-
works are applied to bio-informatics. In addition to these concrete actions there
have also been a variety of joined papers and ongoing discussions and workshops
which attest to the high level of scientific interchange between the partners.
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14.5 Cooperation between partners

It is obvious that the ECAgents project is not structured towards the com-
mon goal of building a single software system, but rather that different partners
are complementary and cover different areas of the research landscape, each
addressing challenges of great relevance to the scientific communities studying
communication from different angles. Cross-fertilization takes place due to an in-
vestigation of mixed systems, for example where selfish agents use some form of
social learning (see chapter 3) or where self-organization which plays a primary
role in eusocial communication (see chapter 6) is also the foundation for the
self-organization of symbol-based communication (see chapter 10). Also because
there is expertise about the full range of communication systems, it becomes
possible to investigate where one type of approach is more adapted than an-
other one for IT or to try and introduce new forms of communication inspired
by living systems. In fact, without the exercise of writing the white paper, and
the progress already achieved in the project it would not have been possible to
write this particular chapter.
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